Abstract:
The present invention relates to LIMK-1, a LIMK-1-analogue or LIMK-1 ligand for the binding to GPIIb and/or activation or inhibition of GPIIb/IIIa downstream signaling, for the production of a medicament for the prevention or treatment of a thrombus formation or blood clotting disease, methods of screening a LIMK-1 analogue or a LIMK-1 ligand and a method for producing a medicament for the treatment of a thrombus formation or blood clotting disease.
Abstract:
A digital circuit arrangement for transforming an input digital picture signal onto a reference horizontal synchronizing signal raster derived from the system clock, which input digital picture signal is present at a system clock rate not locked with the input digital picture signal, which includes a correction memory (1), an interpolator/decimator (2), and a control member for the purpose of a transformation which is as insensitive to interference as possible. The control member receives a control deviation signal (d) obtained with the aid of a discriminator (4) by comparing a horizontal synchronizing signal in the input digital picture signal with the reference horizontal synchronizing signal, and the control member applies a first correcting variable (i) to the correction memory (1), the first correcting variable (i) indicating transformation of the input digital picture signal by integral multiples of the system clock period to be performed by the correction memory (1), and the control member also applies a second correcting variable (.alpha..sub.s) to the interpolator/decimator (2), the second correcting variable (.alpha..sub.s) indicating the transformation by fractions of the system clock period to be performed by the interpolator/decimator (2).
Abstract:
In a digital circuit arrangement for processing an analog video signal, which operates at a fixed system clock not coupled to the video signal, in which the video signal is sampled and which comprises a correction memory (4) and an interpolator with decimator (14) which are used for converting the digital video signal to a synchronizing signal raster predetermined by the system clock, there is provided that the correction memory (4) has a predetermined number of memory sections (5, 6, 7, 8) arranged for storing each the sample values of one picture line which sample values are written or read out at the system clock, that each horizontal synchronizing pulse of the still unconverted video signal triggers a writing process of the subsequent picture line into a memory section (5, 6, 7, 8) and that each horizontal synchronizing pulse derived from the system clock triggers a reading process of the picture line that follows the previously read picture line.