Abstract:
Methods and systems for a distributed optical transmitter with local domain splitting is disclosed and may include, in an optical modulator integrated in a silicon photonics chip: receiving electrical signals, communicating the electrical signals to domain splitters along a length of waveguides of the optical modulator utilizing one or more delay lines, generating electrical signals in voltage domains utilizing the domain splitters, modulating received optical signals in the waveguides of the optical modulator by driving diodes with the electrical signals generated in the voltage domains, and generating a modulated output signal through interference of the modulated optical signal in the waveguides of the optical modulator. The delay lines may comprise one delay element per domain splitter, or may comprise a delay element per domain splitter for a first subset of the domain splitters and more than one delay element per domain splitter for a second subset of the domain splitters.
Abstract:
Methods and systems for all optical tunable equalizers may include an optical modulator comprising an input waveguide, first and second directional couplers, phase modulators, an optical delay, and an optical attenuator. The optical modulator may be operable to receive an input optical signal via the input waveguide, couple a portion of the input optical signal to a second waveguide via the first directional coupler, modulate a phase of optical signals in the input waveguide and the second waveguide using the phase modulators, and couple a feedback optical signal to the first directional coupler via the second directional coupler, the optical delay, and the optical attenuator. The optical modulator may be operable to communicate an output signal of said optical modulator from a first output of the second directional coupler. The optical modulator may be operable to communicate the feedback optical signal from a second output of the second directional coupler.
Abstract:
Methods and systems for a distributed optical transmitter with local domain splitting is disclosed and may include, in an optical modulator integrated in a silicon photonics chip: receiving electrical signals, communicating the electrical signals to domain splitters along a length of waveguides of the optical modulator utilizing one or more delay lines, generating electrical signals in voltage domains utilizing the domain splitters, modulating received optical signals in the waveguides of the optical modulator by driving diodes with the electrical signals generated in the voltage domains, and generating a modulated output signal through interference of the modulated optical signal in the waveguides of the optical modulator. The delay lines may comprise one delay element per domain splitter, or may comprise a delay element per domain splitter for a first subset of the domain splitters and more than one delay element per domain splitter for a second subset of the domain splitters.
Abstract:
Methods and systems for partial integration of wavelength division multiplexing and bi-directional solutions are disclosed and may include, an optical transceiver on a silicon photonics integrated circuit coupled to a planar lightwave circuit (PLC). The silicon photonics integrated circuit may include a first modulator and first light source that operates at a first wavelength and a second modulator and second light source that operates at a second wavelength. The transceiver and PLC are operable to modulate a first continuous wave (CW) optical signal from the first light source utilizing the first modulator and modulate a second CW optical signal from the second light source utilizing the second modulator. The modulated signals may be communicated from the modulators to the PLC utilizing a first pair of grating couplers in the IC and combined in the PLC.
Abstract:
Methods and systems for split voltage domain receiver circuits are disclosed and may include amplifying complementary received signals in a plurality of partial voltage domains. The signals may be combined into a single differential signal in a single voltage domain. Each of the partial voltage domains may be offset by a DC voltage from the other partial voltage domains. The sum of the partial domains may be equal to a supply voltage of the integrated circuit. The complementary signals may be received from a photodiode. The amplified received signals may be amplified via stacked common source amplifiers, common emitter amplifiers, or stacked inverters. The amplified received signals may be DC coupled prior to combining. The complementary received signals may be amplified and combined via cascode amplifiers. The voltage domains may be stacked, and may be controlled via feedback loops. The photodetector may be integrated in the integrated circuit.
Abstract:
Methods and systems for a distributed optoelectronic receiver are disclosed and may include an optoelectronic receiver having a grating coupler, a splitter, a plurality of photodiodes, and a plurality of transimpedance amplifiers (TIAs). The receiver receives a modulated optical signal utilizing the grating coupler, splits the received signal into a plurality of optical signals, generates a plurality of electrical signals from the plurality of optical signals utilizing the plurality of photodiodes, communicates the plurality of electrical signals to the plurality of TIAs, amplifies the plurality of electrical signals utilizing the plurality of TIAs, and generates an output electrical signal from coupled outputs of the plurality of TIAs. Each TIA may be configured to amplify signals in a different frequency range. One of the plurality of electrical signals may be DC coupled to a low frequency TIA of the plurality of TIAs.
Abstract:
Methods and systems for a polarization immune wavelength division multiplexing demultiplexer are disclosed and may include, in an optoelectronic transceiver having an input coupler, a demultiplexer, and an amplitude scrambler: receiving input optical signals of different polarization via the input coupler, communicating the input optical signals to the amplitude scrambler via waveguides, configuring the average optical power in each of the waveguides utilizing the amplitude scrambler, and demultiplexing the optical signals utilizing the demultiplexer. The amplitude scrambler may include phase modulators and a coupling section. The phase modulators may include sections of P-N junctions in the two waveguides. The demultiplexer may include a Mach-Zehnder Interferometer. The demultiplexed signals may be received utilizing photodetectors. The input coupler may include a polarization splitting grating coupler. The average optical power may be configured above which demultiplexer control circuitry is able to control the demultiplexer to process incoming optical signals.
Abstract:
Methods and systems for a distributed optical transmitter with local domain splitting is disclosed and may include, in an optical modulator integrated in a silicon photonics chip: receiving electrical signals, communicating the electrical signals to domain splitters along a length of waveguides of the optical modulator utilizing one or more delay lines, generating electrical signals in voltage domains utilizing the domain splitters, modulating received optical signals in the waveguides of the optical modulator by driving diodes with the electrical signals generated in the voltage domains, and generating a modulated output signal through interference of the modulated optical signal in the waveguides of the optical modulator. The delay lines may comprise one delay element per domain splitter, or may comprise a delay element per domain splitter for a first subset of the domain splitters and more than one delay element per domain splitter for a second subset of the domain splitters.
Abstract:
Methods and systems for a multi-level encoded data path with decoder are disclosed and may include, in a receiver on a chip: receiving a multi-level encoded signal, generating a plurality of copy signals offset from the multi-level encoded signal by a configurable offset voltage, comparing each copy signal against a different threshold level, and generating binary data based on the comparison. At least one of the plurality of copy signals may be compared using a clock data recovery module and/or using a retimer, which may comprise at least one D flip-flop. The multi-level encoded signal may comprise a pulse amplitude modulated-4 (PAM-4) signal. The multi-level encoded signal may be received from a photodiode on the chip. An optical signal may be communicated to the photodiode from a grating coupler on the chip.
Abstract:
Methods and systems for a photonically enabled complementary metal-oxide semiconductor (CMOS) chip are disclosed and may comprise in an integrated circuit comprising a driver: amplifying a received signal in a plurality of partial voltage domains, and generating the partial voltage domains in a domain splitter in the driver. A voltage domain boundary value between two partial voltage domains may be controlled utilizing a differential amplifier that samples an output voltage of a cascade amplifier that is an input to the driver and controls a current supplying said cascade amplifier. A series of diodes may be driven in differential mode via the amplified signals. An optical signal may be modulated via the diodes, which may be integrated in a Mach-Zehnder modulator or a ring modulator. The diodes may be connected in a distributed configuration. The amplified signals may be communicated to the diodes via transmission lines, which may be even-mode coupled.