摘要:
The invention relates to a method for determining a reconstructed image using a particle-optical apparatus. The particle-optical apparatus comprises a particle source for producing a beam of particles, an object plane on which an object to be imaged may be placed, a condenser system for illuminating the object plane with the beam of particles, a projection system for forming an image of the object plane by imaging particles transmitted through the object on an image plane, and a detector for detecting the image, the detector comprising a semiconductor sensor having an array of pixels for providing a plurality of pixel signals from respective pixels of the array in response to particles incident on the detector.
摘要:
An optical disk drive and a method for scanning an optical disk that includes a substantially circular track with a scanning velocity is provided. A servo control signal (SCS) is determined based on a servo error signal (SES). A first performance indicator (IND1) of the servo actuator is determined from at least one of the SES and SCS. IND1 is compared against a first pre-determined threshold (ITHR1), determining a first servo margin (MAR1). The scanning velocity is set in dependence on at least MAR1. In particular, scanning velocity is reduced when the first performance indicator exceeds the first pre-determined threshold. Additionally or alternatively, a bandwidth of control of the servo actuator can be adjusted in dependence on at least one of a second servo margin, determined from at least one of SES and SCS, and a third servo margin, associated with a mark quality determined from a central aperture signal.
摘要:
The invention relates to an optical disk drive. The optical disk drive has an objective lens to be driven by a focus actuator with a focus offset for focusing an incident beam onto an optical disk into a spot with a spherical aberration, and a processor to derive a first and a second characteristic from a sensor output signal and obtain a spherical aberration correction value (SA) from a pre-determined function, the pre-determined function defining a spherical aberration correction value in dependence on a focus offset difference value (ΔFO). The focus offset difference value (ΔFO) is determined from a difference between a second optimal focus offset at which the second characteristic is optimal and a first optimal focus offset at which the first characteristic is optimal. The spherical aberration correction value (SA) can be used to achieve a correction to the spherical aberration of the spot.
摘要:
The present invention relates to a drive for accessing an optical record carrier (2) comprising means (4) for determining the type of record carrier, in particular for distinguishing a read-only record carrier from a recordable or rewritable record carrier having a wobbled groove in the lead-in zone, said means comprising: a DPD measuring unit (41) for measuring the differential phase detection (DPD) signal, a PP measuring unit (42) for measuring the push-pull (PP) signal in case no DPD signal could be measured, a wobble locking unit (43) for locking, in case a PP signal could be measured, to the wobble embedded in said wobbled groove using a first and/or a second polarity setting, and an indication unit (44) for generating a first indication signal indicating that the record carrier is a read-only record carrier if a DPD signal could be measured and that the record carrier is a recordable or rewritable record carrier if no DPD signal but a PP signal could be measured and if locking to the wobble has been successful. In a further embodiment a second indication signal in generated indicating the type of polarity in case of a recordable or rewritable record carrier.
摘要:
The present invention relates to an information reproducing method for reproducing information recorded on an information recording carrier with several information layers by radiating light onto the carrier being e.g. an optical disc. The method comprises the step of 1) focusing the light at a first information layer or a second information layer, where the first layer and the second layer are adjacently positioned in the information recording carrier, 2) performing radial tracking on the reflected light from the information recording carrier, and 3) assessing form the radial tracking if the light is focussed on a clockwise or a counter-clockwise oriented spiral relative to the focussed light. In a particular embodiment, the assessment of whether the light is focussed on a clockwise or a counter-clockwise oriented spiral relative the light is utilized for indicating the identity of the layer on which the light is focussed. The invention also relates to an optical apparatus for implementing the method of the invention.
摘要:
An optical disk drive and a method for determining a disk type are described. The optical disk drive may be arranged to receive a radial error signal while an incident beam is focused onto the optical disk and before tracking the track, to analyze the radial error signal for detecting whether a wobble signal is present, indicating whether the track is wobbled, and to derive a disk type from the wobble signal, if present. The optical disk drive may additionally or alternatively be arranged to receive a central aperture signal while the incident beam is focused onto the optical disk and before tracking a track including a sequence of embossed pits, to analyze the signal amplitude of the central aperture signal, and to determine the disk type from at least a first variation of the signal amplitude of the central aperture signal as a function of time.
摘要:
The invention described is an apparatus for reproducing information from an information carrier (11) comprising: a waveform equalizer (6) for obtaining a corrected signal (S′) by performing a waveform equalization to a read signal (S), the waveform equalizer (6) having an amplifying element with a gain (K); and gain setting means (1) for reading a numerical gain setting stored on the information carrier (11) and setting the gain (K) of the amplifying element to a value related to the numerical gain setting. By reading the numerical gain setting from the information carrier, the apparatus is able to set the gain (K) of the waveform equalizer to the optimal value for suppressing noise and inter symbol interference. The equalizer can be followed by a limit equalizer, the gain of which can also be wave form read from the information carrier.
摘要:
An apparatus is described for recording an optical record carrier (40). The apparatus is arranged for recording a visually detectable pattern (LBL) at the record carrier in a ring shaped zone (RP). The apparatus is further arranged to record data (Data1, Data2) and a primary data organizing system (FS) wherein the data is organized. The primary data organizing system (FS) does not refer to a physical address within the ring shaped zone. The apparatus is further arranged for recording at least part of the data (Data2) or the primary data organizing system on the record carrier at an area peripherally arranged with respect to the ring shaped zone.
摘要:
The invention relates to a method for setting an optimum value of a write parameter for use in an optical recording apparatus for writing information on an optical recording medium by means of a radiation beam. The optimum value of a write parameter is found by curve-fitting a function and obtaining a characteristic write power level (PChar) from the curve-fitting function. It is then assessed if the characteristic write power level (PChar) qualify as an optimum value of a write parameter. If the characteristic write power level (Pchar) does not qualify as an optimum value of a write parameter then an iteration procedure is started, where the subsequent initial values of write power level (Pini, n), are given by Pini, n+1=A Pini, n+(1−A)Pchar, n, where A is a constant, and n is an integer. The invention also relates to an optical recording apparatus and an optical recording medium according to the invention.
摘要:
In this optical medium (1), a pre-groove track (5) which generates a tracking signal called PP signal, is embedded between layers (40 and 41) of material. This PP signal varies considerably between written and empty tracks. The reading and/or the writing can be disturbed to a large extent. An optical medium formed by a material which presents a slightly positive weak variation in the phase between written track and unwritten track and an average reflection coefficient of an order of magnitude of 0.5 or greater avoids this disturbance.