摘要:
Aspects of a method and system for interference suppression between multipath signals utilizing a programmable interface suppression module may include one or more processors and/or circuits that are operable to program an interference suppression module based on one or more interference cancellation parameters. A plurality of weighting factor values may be determined based on the one or more interference suppression parameters and a received plurality of multipath signals. A plurality of estimated signals may be generated based on the plurality of weighting factor values. A plurality of updated estimated signals may be generated based on the plurality of estimated signals. A plurality of interference suppressed signals may be generated based on the plurality of updated estimated signals and/or a plurality of updated residual signals.
摘要:
A wireless system may receive a plurality of multipath signals from a plurality of transmitters and sequentially process each of a plurality of data symbols in the received multipath signals utilizing a plurality of shared hardware modules within a chip. Desired information may be recovered from data transmitted by one or more of the transmitters utilizing the interference suppressed signal. Chips of data may be cell combined utilizing one or more of shared hardware modules. The shared modules may include channel rotation modules and sum and difference modules. One or more fast Hadamard transforms and/or inverse Hadamard transforms may be performed utilizing shared hardware modules. Data symbols may be interpolated, scrambled, descrambled, and/or weighted and added back utilizing the shared hardware modules.
摘要:
Aspects of a method and system for interference suppression between multipath signals utilizing a programmable interface suppression module may include one or more processors and/or circuits that are operable to program an interference suppression module based on one or more interference cancellation parameters. A plurality of weighting factor values may be determined based on the one or more interference suppression parameters and a received plurality of multipath signals. A plurality of estimated signals may be generated based on the plurality of weighting factor values. A plurality of updated estimated signals may be generated based on the plurality of estimated signals. A plurality of interference suppressed signals may be generated based on the plurality of updated estimated signals and/or a plurality of updated residual signals.
摘要:
Aspects of a method and system for interference suppression using information from non-listened base stations are provided. In this regard, one or more circuits in a wireless communication device may be operable to receive a raw signal comprising one or more desired signals from one or more serving base transceiver stations (BTSs) and comprising one or more undesired signals from one or more non-listened BTSs. The one or more circuits may be operable to generate first estimate signals that estimate the one or more undesired signals as transmitted by the one or more non-listened BTSs, generate an interference suppressed version of the raw signal based on the first estimate signals, and recover the one or more desired signals from the interference suppressed version of the raw signal. The non-listened BTSs may comprise one or more BTSs that are not serving the wireless communication device and are not involved in a handoff of the wireless communication device.
摘要:
A wireless system may receive a plurality of multipath signals from a plurality of transmitters and sequentially process each of a plurality of data symbols in the received multipath signals utilizing a plurality of shared hardware modules within a chip. Desired information may be recovered from data transmitted by one or more of the transmitters utilizing the interference suppressed signal. Chips of data may be cell combined utilizing one or more of shared hardware modules. The shared modules may include channel rotation modules and sum and difference modules. One or more fast Hadamard transforms and/or inverse Hadamard transforms may be performed utilizing shared hardware modules. Data symbols may be interpolated, scrambled, descrambled, and/or weighted and added back utilizing the shared hardware modules.
摘要:
Aspects of a method and system for processing signals utilizing a programmable interference suppression module are provided. In this regard, a received signal may be iteratively processed to generate an interference suppressed representation of the received signal. The iterative processing may comprise a weighting iteration; an addback weighting and un-addback iteration, and an addback iteration. The weighting iteration may comprise generating one or more first estimate signals that estimate user signals present in the received signal. The addback, weighting, and un-addback iteration may comprise generating one or more incremental estimate signals based on the one or more first estimate signals and the one or more second estimate signals. The addback iteration may comprise generating an interference suppressed representation of the received signal based on at least the one or more second estimate signals.
摘要:
A baseband processing module for use within a Radio Frequency (RF) transceiver includes a downlink/uplink interface, TX processing components, a processor, memory, RX processing components, and a turbo decoding module. The RX processing components receive a baseband RX signal from the RF front end, produce a set of IR samples from the baseband RX signal, and transfer the set of IR samples to the memory. The turbo decoding module receives at least one set of IR samples from the memory, forms a turbo code word from the at least one set of IR samples, turbo decodes the turbo code word to produce inbound data, and outputs the inbound data to the downlink/uplink interface. The turbo decoding module performs metric normalization based upon a chosen metric, performs de-rate matching, performs error detection operations, and extracts information from a MAC packet that it produces.
摘要:
A video processor within a wireless terminal, that includes a video interface that receives incoming video information and that provides outgoing video information, a processing module operably coupled to the video interface, and a video accelerator module and a motion processing co-processor operably coupled to the processing module. The processing of the incoming video information and the outgoing video information is performed by the combination of the processing module, co-processor and the video accelerator module. Compute intensive operations may be offloaded from the processing module onto the video accelerator to improve overall system efficiency.