Abstract:
A system for estimating the background noise in a loudspeaker-room-microphone system is presented herein where the loudspeaker is supplied with a source signal and the microphone picks up the source signal distorted by the room and provides a distorted signal. The system comprises an adaptive filter receiving the source signal and the distorted signal, and providing an error signal, a post filter connected downstream of the adaptive filter and a smoothing filter arrangement connected downstream of the adaptive filter. The smoothing filter arrangement includes a spectral domain smoothing filter and that provides a spectral domain estimated-noise signal, and a time domain smoothing filter and that provides a time domain estimated-noise signal. A scaling factor calculation unit receives signals indicative of the spectral domain estimated noise signal and the time domain estimated noise signal provides a scaling factor to a scaling unit that applies the scaling factor to the spectral domain estimated-noise signal to provide an enhanced spectral domain estimated-noise signal.
Abstract:
An input signal is supplied to a loudspeaker-room-microphone system having a transfer function and that provides an output signal. An adaptive filter unit models the transfer function of the loudspeaker-room-microphone system and provides an approximated output signal, where the output signal and the approximated output signal are subtracted from each other to provide an error signal. The modeling of the transfer function of the loudspeaker-room-microphone system in the adaptive filter comprises transforming the input signal and the error signal from the time domain into the spectral domain; delaying of the input signal in the frequency domain to generate multiple differently delayed input signals in the frequency domain; adaptive filtering of each one of the multiple differently delayed input signals in the frequency domain according to the error signal in the spectral domain; summing up of the filtered differently delayed input signals in the frequency domain to generate the approximated output signal in the frequency domain; and transforming the approximated output signal from the spectral domain into the time domain.
Abstract:
An active noise cancellation system reduces, at a listening position, the power of a noise signal being radiated from a noise source to the listening position. The system includes an adaptive filter that receives a reference signal representing the noise signal, and provides a compensation signal. A bass management unit receives the compensation signal and applies a phase shift to the compensation signal to provide a phase shifted compensation signal. A first acoustic radiator receives the phase shifted compensation signal and radiates audio indicative thereof to the listening position. A second acoustic radiator receives the compensation signal and radiates audio indicative thereof to the listening position. The transfer function characteristics from the input of the bass management system to the listening position approximately matches a desired transfer function.
Abstract:
An audio system includes a first transformation device provided with an input audio signal and which transforms the input audio signal from the time domain to the frequency domain resulting in an input spectrum. The system also includes a spectral processing device, which is connected downstream from the first transformation device, that receives the input spectrum and produces from it an output spectrum with a dynamic range that is reduced from that of the input spectrum. The system further includes a second transformation device connected downstream from the spectral processing device, and provided with the output spectrum. The second transformation device transforms the output spectrum from the frequency domain to the time domain, and provides an output audio signal.
Abstract:
An active control of an unwanted noise signal at a listening site radiated by a noise source uses a reference signal that has an amplitude and/or frequency such that it is masked for a human listener at the listening site by the unwanted noise signal and/or a wanted signal present at the listening site in order to adapt for the time-varying secondary path in a real time manner such that a user doesn't fell disturbed by an additional artificial noise source.
Abstract:
System and method for improving the acoustical communication between interlocutors in at least two positions in a room, comprising generating electrical signals representative of acoustical signals present at the respective interlocutor positions; amplifying each of said electrical signals; and converting said amplified electrical signals into acoustical signals; wherein said electrical signals are each delayed with a delay time such that the acoustical signal arriving first at one of the interlocutor positions originates from the direction of the other interlocutor position.
Abstract:
A testing system tests an audio connection between an audio source and a loudspeaker. The system includes a loudspeaker that converts a reference signal into a sound. An adaptive filter processes the reference signal to minimize an error signal. A decision circuit analyzes the error signal and the received signal to determine signal correlation. When the signals are not correlated, a defect is detected.
Abstract:
An audio enhancement system for compensating for ambient noise in a listening environment, comprises an audio system that produces an electrical sound signal and generates a sound output from the electrical sound signal. A sensor (e.g., a microphone) senses a total sound signal representative of the total sound level in the listening environment, including the sound output from the audio system and the ambient noise within the listening environment. A processing unit responsive to the total sound signal and the electrical sound signal extracts from the total sound signal an ambient noise signal representative of the ambient noise in the listening environment. A controller responsive to the ambient noise signal performs a linear predictive coding (LPC) analysis and generates a control signal, which is input to an equalizer to adjust the sound output of the audio system in order to compensate for the ambient noise level.
Abstract:
The invention relates to a sensor device containing a housing (1) and a spring element (9) comprising a guiding element (5) for displacing the sensor device over a mounting plate (7) in a guided manner. Said guiding element (5) co-operates with a guiding means (12) of the mounting plate (7). In a mounting position of the sensor device, said sensor device engages in the mounting plate (7) and is fixed to the same.
Abstract:
An audio enhancement system is provided for compensating for distortions (e.g., linear distortions) of a sound signal reproduced by an audio system in a listening room. The audio enhancement system includes analysis filters that generate a plurality of analysis output signals from an audio signal to be enhanced. The system also includes synthesis filters that generate an enhanced audio signal from a number of synthesis input signals. The number of analysis output signals and the number of synthesis input signals preferably are equal. Signal processing elements between the analysis filters and the synthesis filters generate one of the synthesis input signals from a respective one of the analysis output signals to perform an inverse filtering for linearizing an unknown transfer function indicative of the audio system and the listening room in the respective frequency range.