Abstract:
A method of binarizing an input symbol using a hybrid Truncated Rice/k-th order exp-Golomb binarization scheme with a Rice Parameter includes: determining a threshold; comparing the input symbol with the threshold; constructing a codeword using a Truncated Rice (TR) binarization process for the input symbol when a comparison result belongs to a first type of comparison result; and constructing a codeword with an initial prefix and a suffix for the input symbol when the comparison result belongs to a second type of comparison result; wherein the suffix is constructed using an exp-Golomb binarization process.
Abstract:
A method for generating a decoded value from a codeword which is binarized utilizing a concatenated unary/k-th order Exp-Golomb code includes: identifying a first portion of the codeword, a second portion of the codeword and a third portion of the codeword; generating an offset according to the second portion; decoding the third portion to generate an index value; and generating the decoded value by adding the offset and the index value.
Abstract:
A video encoding method includes: during a first period, performing an encoding process upon a first block group of a current frame to generate a first block group bitstream; and during a second period, transmitting a second block group bitstream derived from encoding a second block group of the current frame, wherein the second period overlaps the first period. The encoding process includes: during a first time segment of the first period, performing a first in-loop filtering process upon a first group of pixels; and during a second time segment of the first period, performing a second in-loop filtering process upon a second group of pixels, wherein the second time segment overlaps the first time segment, and a non-zero pixel distance exists between a first edge pixel of the first group of pixels and a second edge pixel of the second group of pixels in a filter direction.
Abstract:
A method and apparatus of image coding including a no-residue prediction mode are disclosed. At the encoder side, current predictors for a current coding unit are determined according to a target prediction process associated with a target prediction mode. The current predictors are determined based on pixel data including reconstructed pixels in the current slice or the current image. The target prediction process is applied to the current coding unit using the current predictors to generate prediction residues. A distortion condition or a cost measure for the prediction residues is determined. If the distortion condition is satisfied or the cost measure favors coding without the prediction residues, the current coding unit is encoded into current compressed bits of the current coding unit without compressed data associated with the prediction residues. A corresponding decoding method and apparatus are also disclosed.
Abstract:
An encoding method is used for encoding an image. The image includes a plurality of blocks each having a plurality of pixels. The encoding method includes: encoding a plurality of data partitions of block data of a block in the image to generate a plurality of compressed bitstream segments, respectively; and combining the compressed bitstream segments to generate an output bitstream of the block. A bit group based interleaving process is involved in generating the output bitstream. According to the bit group based interleaving process, each of the compressed bitstream segments is divided into a plurality of bit groups each having at least one bit, and the output bitstream includes consecutive bit groups belonging to different compressed bitstream segments, respectively.
Abstract:
Methods of palette coding to reduce the required coding process are disclosed. According to one method, smaller blocks are derived from a large block. The histogram of the large block is derived based on the histograms of smaller blocks in the large block. According to another method, one or more palette tables are derived based on multiple blocks. One palette table is used for each of the multiple blocks. According to yet another method, index map transpose is performed in the parsing stage according to the transpose flag of the index map. Accordingly, a buffer to store the transpose flags can be saved. According to still yet another method, the palette predictor update is performed using an index mapping table to avoid the need for shuffling the contents of the palette predictor stored in a palette buffer.
Abstract:
A video encoder includes a video encoding circuit and a slice decision circuit. The video encoding circuit encodes a first slice in a frame according to a first coding unit boundary between an end of the first slice and a start of a second slice in the frame, and outputs a first bitstream of the first slice. The slice decision circuit predicts the first coding unit boundary before a bitstream of a last coding unit of the first slice is generated by the video encoding circuit, and informs the video encoding circuit of the first coding unit boundary. The video encoding circuit refers to the first coding unit boundary predicted by the slice decision circuit to ensure that a bitstream size of the first bitstream is constrained by a predetermined bitstream size threshold.
Abstract:
A hybrid video encoding method and system using a software engine and a hardware engine. The software engine receives coding unit data associated with a current picture, and performs a first part of the video encoding operation by executing instructions. The first part of the video encoding operation generates an inter predictor and control information corresponding to the coding unit data of the current picture. The first part of the video encoding operation stores the inter predictor into an off-chip memory. The hardware engine performs a second part of the video encoding operation according to the control information. The second part of the video encoding operation receives the inter predictor, and subtracts the inter predictor from the coding unit data to generate a residual signal. The second part of the video encoding operation then transforms and quantizes the residual signal to generate transformed and quantized residual signal, and encodes the transformed and quantized residual signal to generate an encoded video bitstream.
Abstract:
An image processing method includes at least the following steps: partitioning a picture into a plurality of slices, wherein each slice row in the picture includes at least one slice; generating a compressed picture by encoding each of the slices; and controlling at least one of start of transmission of encoded data of a slice row and end of the transmission of encoded data of the slice row according to a transmission synchronization event.
Abstract:
One exemplary image encoding method for encoding an image includes following steps: calculating a mean value of each color channel of a plurality of reconstructed pixels; determining a first predictor used by a first candidate coding mode of a current coding block according to mean values of color channels of the reconstructed pixels; determining a second predictor used by a second candidate coding mode of the current coding block according to the mean values of the color channels of the reconstructed pixels, wherein determining the first predictor and determining the second predictor are performed in a parallel manner; determining a coding mode selected from candidate coding modes including at least the first candidate coding mode and the second candidate coding mode; and encoding the current coding block into a part of a bitstream according to at least the determined coding mode.