摘要:
What is disclosed is a novel system and method for mapping out-of-gamut colors to a device's gamut to improve image quality in a color document reproduction device involves performing the following. First, an out-of-gamut color xi, which is intended to be mapped to a boundary surface of a color gamut of a color marking device, is selected. A gamut mapping function is also selected. The selected gamut mapping function is intended to be applied to the selected out-of-gamut color point. At least one performance attribute is then selected for the color marking device and a multi-objective cumulative cost JT is determined based upon a combination of costs Jgm and Js. The multi-objective cumulative cost JT is then iteratively driven to a minimum. Once the minimum has been determined, a gamut mapping of the selected out-of-gamut color can then be performed using the minimized multi-objective cumulative cost. Various embodiments are disclosed.
摘要:
What is disclosed is a novel system and method for determining printer performance in terms of image quality (IQ) on-paper using on-belt measurements. First, image noise is measured via sensing of single-separation device-dependent colors on an imaging member for a target marking device. Such single-separation device-dependent colors, in one embodiment, comprise cyan, magenta, yellow and black. A predictive correlation model is used to project the image noise of the single-separation device-dependent colors when printed on a substrate. A noise prediction model is used to estimate image noise performance values of multi-separation device-dependent colors on a substrate from the projected single-separation device-dependent colors on a substrate. In one embodiment, the predictive correlation model comprises a separation-dependent polynomial equation. The estimated image noise performance values on a substrate are used to determine image quality metric of the target marking device.
摘要:
What is disclosed is a system and method for improving image quality of a color of interest using a cluster model in a color printing system involving the following. First, one or more image quality attributes are selected for a target color marking device. A cluster model is received which comprises a plurality of clusters with each cluster having an associated transform. The cluster model is used to estimate an image quality parameter. The image quality parameter is used to select colorant sets and thereby to improve the image quality in the marking device. Various embodiments of the use of cluster models are disclosed.
摘要:
A method for optimally using color patch codes or color barcodes for transmitting machine-readable information, via device characterization, is disclosed to comprise characterizing a printing device and optionally a sensing device for identifying a number of recognizably spaced printer output colors; deriving a code book, by relating the printer output colors and their corresponding input values to information elements; and using the code book for encoding and decoding the information to be transmitted. The recognizably spaced printer output colors are in terms of a color space relevant to a color patch code or color barcode sensing device, and are related to the corresponding marking device input values.
摘要:
What is disclosed is a novel system and method for identifying and removing print defects from an original document such that user markings applied to the hardcopy originally can be more readily identified and extracted. In one embodiment, an image of an original document and a marked document are received. The original document was printed using a print device which caused a print defect in the hardcopy print. Methods for identifying the print defect in the difference image are provided herein. The identified print defect is removed from the difference image. The difference image retains the user-applied markings once the print defects have been identified and removed. The user markings can then be provided to a storage device for subsequent retrieval and added into the image of the original document to generate an image of a new marked document containing the user markings without the defect. Various embodiments are disclosed.
摘要:
What is disclosed is a novel system and method for determining a printer metric in terms of image quality (IQ) over a large complex set of conditions based upon measurements taken over a small simple set of conditions while compensating for printer drift. The present system and method effectively utilizes a predictive model that predicts noise measurements of multi-separations from those of single-separation colors and/or a subset of the multi-separations. Because a model is used to comprehend the metric over the entire gamut, the number of patches is reduced. This reduction enables the method to be used within a machine to dynamically characterize the device's image quality metric. Various embodiments have been disclosed.
摘要:
What is disclosed is a novel system and method for banding defect detection and analysis in digital imaging systems. The present method utilizes the gray levels of image regions and a collection of sequence of user images to improve the banding analysis. One embodiment hereof includes: segmenting images into regions; determining banding information for each page over a given sequence of images and detecting problem banding defect frequencies; estimating the banding amplitude(s) and average gray levels for each segmented region for each identified banding frequency(ies); and determining, through a process of interpolation, the banding amplitude for the image or sequence of images based on the banding amplitude and average gray levels of each region. Thereafter, notification can be provided to a key operator when the amplitude(s) are expected to exceed pre-determined levels over the course of a production run. The method demonstrates advantages in banding detection over whole-page methods.
摘要:
Methods and systems are disclosed which are capable of efficiently performing color management of a variable gloss color printing system. The methods and systems select at least one set of the linear color values corresponding to the color profile for the printing device (at the nominal gloss condition). The linear color values selected comprise those obtained from color values corresponding to each node of the color profile at the nominal gloss condition. In a colorimetric embodiment, the linear color values can comprise: tristimulus values XYZ; red, green, blue (RGB); or luminance component Y, and two chromatic components C1 and C2 (YCC). In a reflectance embodiment, the linear color values comprise reflectance spectra. This exemplary method adds an offset term to each of the linear color values to produce a corresponding set of modified linear color values, and generates a color profile for the printing device at the desired gloss condition based on the modified linear color values.
摘要:
What is disclosed is a system and method for improving image quality of a color of interest using a cluster model in a color printing system involving the following. First, one or more image quality attributes are selected for a target color marking device. A cluster model is received which comprises a plurality of clusters with each cluster having an associated transform. The cluster model is used to estimate an image quality parameter. The image quality parameter is used to select colorant sets and thereby to improve the image quality in the marking device. Various embodiments of the use of cluster models are disclosed.
摘要:
What is disclosed is a novel system and method for updating a cluster model for color control. In one example embodiment, a cluster model is received and analyzed to identify clusters therein. Each of the identified clusters has an associated transform. Thereafter, in response to a threshold event having occurred, a critical cluster is identified and a critical color is identified from the cluster. Steps for identifying a critical color are more fully described herein. A selected number of patches is then printed in each of the critical colors and color measurements are obtained from the printed patches using, for instance, a colorimeter or spectrophotometer. If the color measurements have deviated beyond a defined threshold, then update the cluster model by: updating the transform associated with the cluster; redefining the number of clusters; redefining a center of any of the clusters; or redefining a boundary of the clusters.