摘要:
System and method for the determination of the relevance of a content item to a query through the use of a machine learned relevance function that incorporates click-through features of the content items. A method for selecting a relevance function to determine a relevance of a query-content item pair comprises generating training set having one or more query-URL pairs labeled for relevance based on their click-through features. The labeled query-URL pairs are used to determine the relevance function by minimizing a loss function that accounts for click-through features of the content item. The computed relevance function is then applied to the click-through features of unlabeled content items to assign relevance scores thereto. An inverted click-through index of query-score pairs is formed and combined with the content index to improve relevance of search results.
摘要:
Embodiments of the present invention provide for methods, systems and computer program products for learning ranking functions to determine the ranking of one or more content items that are responsive to a query. The present invention includes generating one or more training sets comprising one or more content item-query pairs and determining one or more contradicting pairs in a given training sets. An optimization function to minimize the number of contradicting pairs in the training set is formulated. and modified by incorporating a grade difference between one or more content items corresponding to the query in the training set and applied to each query in the training set. A ranking function is determined based on the application of regression trees on the queries of the training set minimized by the optimization function and stored for application to content item-query pairs not contained in the one or more training sets.
摘要:
A method and apparatus for determining a ranking function by regression using relative preference data. A number of iterations are performed in which to following is performed. The current ranking function is used to compare pairs of elements. The comparisons are checked against actual preference data to determine for which pairs the ranking function mis-predicted (contradicting pairs). A regression function is fitted to a set of training data that is based on contradicting pairs and a target value for each element. The target value for each element may be based on the value that the ranking function predicted for the other element in the pair. The ranking function for the next iteration is determined based, at least in part, on the regression function. The final ranking function is established based on the regression functions. For example, the final ranking function may be based on a linear combination of regression functions.
摘要:
Method, system, and programs for recommending content to a user. First information related to one or more previous users is first obtained. A model that maps from users to topics of interest is then established based on the first information related to the one or more previous users. Second information related to the current user is also obtained. One or more topics of interest are identified for the current user based on the model. Content is recommended to the current user in accordance with the one or more topics of interest for the current user. Eventually, an updated model is generated by integrating information associated with the current user with the model established based on the first information related to the one or more previous users. The information associated with the current user includes the second information related to the current user.
摘要:
Methods and systems are disclosed that relate to ranking functions for multiple different domains. By way of example but not limitation, ranking functions for multiple different domains may be trained based on inter-domain loss, and such ranking functions may be used to rank search results from multiple different domains so that they may be blended without normalizing relevancy scores.
摘要:
Method, system, and programs for hybrid information query. A request is first received from a user associated with a hybrid query. The hybrid query is expressed in accordance with an input in terms of one of a user, a feature, and a document, and a desired hybrid query result in terms of one of a user, a feature, and a document. A mapping is then determined between the input and the desired hybrid query result. A hybrid model is established based on hybrid information collected and associated with one or more users. The mapping is performed based on the hybrid model to obtain the desired hybrid query result based on the input. Eventually, the desired hybrid query result is provided as a response to the hybrid query.
摘要:
A server determines a plurality of immediate candidate items for a first web page to recommend to a user. For each particular immediate candidate item of the plurality of immediate candidate items, the server determines a separate sequence of two or more subsequent possible candidate items for subsequent web pages to recommend to the user in the event that the user selects the particular immediate candidate item. Further, the server selects a particular immediate candidate item from the plurality of immediate candidate items for the first web page to recommend to the user. The first web page that recommends the plurality of immediate candidate items is generated and sent over the Internet to the user.
摘要:
Performing an on-line recommendation includes: analyzing real-time data from various sources; determining, from the analysis, events in which a user may be interested; extracting the determined events; storing the extracted events in a data store; and performing a recommendation function. The recommendation function includes: ranking the extracted events to determine the events in which the user is most likely to be interested; and performing location-based filtering, retaining those extracted events that are within a geo-location range proximate to the user, thus generating optimal events.
摘要:
Particular embodiments extract a plurality of users, a plurality of establishments, and a plurality of items from dining information provided by at least one of the plurality of users, each of the plurality of establishments sells food or beverage; construct a user-establishment matrix, a user-item matrix, and an establishment-item matrix using the plurality of users, the plurality of establishments, and the plurality of items; generate a user latent representation for the plurality of users, an establishment latent representation for the plurality of establishments, and an item latent representation for the plurality of items; and compute one or more correlations using the user latent representation, the establishment latent representation, or the item latent representation, wherein each of the one or more correlations is between two users, two establishments, two items, one user and one establishment, one of user and one item, or one establishment and one item.
摘要:
The present invention relates to systems and methods for determining a content item relevance function. The method comprises collecting user preference data at a search provider for storage in a user preference data store and collecting expert-judgment data at the search provider for storage in an expert sample data store. A modeling module trains a base model through the use of the expert-judgment data and tunes the base model through the use of the user preference data to learn a set of one or more tuned models. A measure (B measure) is designed to evaluate the balanced performance of tuned model over expert judgment and user preference. The modeling module generates or selects the content item relevance function from the tuned models with B measure as the selection criterion.