摘要:
Methods and systems are disclosed that relate to ranking functions for multiple different domains. By way of example but not limitation, ranking functions for multiple different domains may be trained based on inter-domain loss, and such ranking functions may be used to rank search results from multiple different domains so that they may be blended without normalizing relevancy scores.
摘要:
Methods and systems are disclosed that relate to ranking functions for multiple different domains. By way of example but not limitation, ranking functions for multiple different domains may be trained based on inter-domain loss, and such ranking functions may be used to rank search results from multiple different domains so that they may be blended without normalizing relevancy scores.
摘要:
A set of item-item affinities for a plurality of items is determined based on collaborative-filtering techniques. A set of an item's nearest neighbor items based on the set of item-item affinities is determined. A set of user feature-item affinities for the plurality of items and a set of user features is determined based on least squared regression. A set of a user feature's nearest neighbor items is determined based in part on the set of user feature-item affinities. Compatible affinity weights for nearest neighbor items of each item and each user feature are determined and stored. Based on user features of a particular user and items a particular user has consumed, a set of nearest neighbor items comprising nearest neighbor items for user features of the user and items the user has consumed are identified as a set of candidate items, and affinity scores of candidate items are determined. Based at least in part on the affinity scores, a candidate item from the set of candidate items is recommended to the user.
摘要:
Methods and apparatus for performing computer-implemented personalized recommendations are disclosed. User information pertaining to a plurality of features of a plurality of users may be obtained. In addition, item information pertaining to a plurality of features of the plurality of items may be obtained. A plurality of sets of coefficients of a linear model may be obtained based at least in part on the user information and/or the item information such that each of the plurality of sets of coefficients corresponds to a different one of a plurality of items, where each of the plurality of sets of coefficients includes a plurality of coefficients, each of the plurality of coefficients corresponding to one of the plurality of features. In addition, at least one of the plurality of coefficients may be shared among the plurality of sets of coefficients for the plurality of items. Each of a plurality of scores for a user may be calculated using the linear model based at least in part upon a corresponding one of the plurality of sets of coefficients associated with a corresponding one of the plurality of items, where each of the plurality of scores indicates a level of interest in a corresponding one of a plurality of items. A plurality of confidence intervals may be ascertained, each of the plurality of confidence intervals indicating a range representing a level of confidence in a corresponding one of the plurality of scores associated with a corresponding one of the plurality of items. One of the plurality of items for which a sum of a corresponding one of the plurality of scores and a corresponding one of the plurality of confidence intervals is highest may be recommended.
摘要:
Information with respect to users, items, and interactions between the users and items is collected. Each user is associated with a set of user features. Each item is associated with a set of item features. An expected score function is defined for each user-item pair, which represents an expected score a user assigns an item. An objective represents the difference between the expected score and the actual score a user assigns an item. The expected score function and the objective function share at least one common variable. The objective function is minimized to find best fit for some of the at least one common variable. Subsequently, the expected score function is used to calculate expected scores for individual users or clusters of users with respect to a set of items that have not received actual scores from the users. The set of items are ranked based on their expected scores.
摘要:
Embodiments are directed towards generating a unified user account trustworthiness system through user account trustworthiness scores. A trusted group of user accounts may be identified for a given action by grouping a plurality of user accounts into tiers based on a trustworthiness score of each user account for the given action. The tiers and/or trustworthiness scores may be employed to classify an item, such as a message as spam or non-spam, based on input from the user accounts. The trustworthiness scores may also be employed to determine if a user account is a robot account or a human account. The trusted group for a given action may dynamically evolve over time by regrouping the user accounts based on modified trustworthiness scores. A trustworthiness score of an individual user account may be modified based on input received from the individual user account and input from other user accounts.
摘要:
Content items are selected to be displayed on a portal page in such a way as to maximize a performance metric such as click-through rate. Problems relating to content selection are addressed, such as changing content pool, variable performance metric, and delay in receiving feedback on an item once the item has been displayed to a user. An adaptation of priority-based schemes for the multi-armed bandit problem, are used to project future trends of data. The adaptation introduces experiments concerning a future time period into the calculation, which increases the set of data on which to solve the multi-armed bandit problem. Also, a Bayesian explore/exploit method is formulated as an optimization problem that addresses all of the issues of content item selection for a portal page. This optimization problem is modified by Lagrange relaxation and normal approximation, which allow computation of the optimization problem in real time.
摘要:
Content items are selected to be displayed on a portal page in such a way as to maximize a performance metric such as click-through rate. Problems relating to content selection are addressed, such as changing content pool, variable performance metric, and delay in receiving feedback on an item once the item has been displayed to a user. An adaptation of priority-based schemes for the multi-armed bandit problem are used to project future trends of data. The adaptation introduces experiments concerning a future time period into the calculation, which increases the set of data on which to solve the multi-armed bandit problem. Also, a Bayesian explore/exploit method is formulated as an optimization problem that addresses all of the issues of content item selection for a portal page. This optimization problem is modified by Lagrange relaxation and normal approximation, which allow computation of the optimization problem in real time.
摘要:
A set of item-item affinities for a plurality of items is determined based on collaborative-filtering techniques. A set of an item's nearest neighbor items based on the set of item-item affinities is determined. A set of user feature-item affinities for the plurality of items and a set of user features is determined based on least squared regression. A set of a user feature's nearest neighbor items is determined based in part on the set of user feature-item affinities. Compatible affinity weights for nearest neighbor items of each item and each user feature are determined and stored. Based on user features of a particular user and items a particular user has consumed, a set of nearest neighbor items comprising nearest neighbor items for user features of the user and items the user has consumed are identified as a set of candidate items, and affinity scores of candidate items are determined. Based at least in part on the affinity scores, a candidate item from the set of candidate items is recommended to the user.
摘要:
Content items are selected to be displayed on a portal page in such a way as to maximize a performance metric such as click-through rate. Problems relating to content selection are addressed, such as changing content pool, variable performance metric, and delay in receiving feedback on an item once the item has been displayed to a user. An adaptation of priority-based schemes for the multi-armed bandit problem are used to project future trends of data. The adaptation introduces experiments concerning a future time period into the calculation, which increases the set of data on which to solve the multi-armed bandit problem. Also, a Bayesian explore/exploit method is formulated as an optimization problem that addresses all of the issues of content item selection for a portal page. This optimization problem is modified by Lagrange relaxation and normal approximation, which allow computation of the optimization problem in real time.