Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The disclosure provides a method by which a terminal, during uplink signal transmission: receives, from a base station, first information for indicating transmission of uplink control information and/or data in a specific subframe; receives, from the base station, second information for indicating transmission of the uplink control information and/or the data in the specific subframe; and determines the uplink control information and/or the data to be transmitted in the specific subframe on the basis of a capability of the terminal and transmits the determined uplink control information and/or data in the specific subframe.
Abstract:
The present disclosure relates to a communication technique that combines a 5G communication system for supporting a data rate that is higher than that of a beyond 4G system with IoT technology, and a system thereof. The present disclosure may be applied to intelligent services on the basis of 5G communication technology and IoT related technology, such as smart home, smart building, smart city, smart car or connected car, health care, digital education, retail, security and safety related services. The present disclosure relates to a method and an apparatus for operations of a terminal and a base station to transmit an uplink signal in a communication system, and more particularly, to a method by a base station for generating timing advance information for uplink transmission of a terminal and a reception method by the terminal.
Abstract:
A communication method and system for converging a fifth generation (5G) communication system for supporting higher data rates beyond a fourth generation (4G) system with a technology for Internet of things (IoT) are disclosed. The communication method and system may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method of a terminal for selecting a candidate beam in a wireless communication system is disclosed. The method includes receiving information on a reference signal from a base station, measuring a plurality beams based on the information on the reference signal, and determining at least one candidate beam among the plurality beams, the candidate beam comprising a beam quality above a threshold.
Abstract:
A communication technique in which a fifth generation (5G) communication system for supporting increases in high data transmission rate(s) after a fourth generation (4G) system converges with an Internet of things (IoT) technology, and a system thereof are provided. The system may be applied to intelligent services (e.g., smart hole, smart building, smart city, smart car or connected car, healthcare, digital education, retail business, security and safety-related services) based on a 5G communication technology and IoT-related technology. The present disclosure includes a structure of a signal and a channel, and an operation method and apparatus for supporting random access for a system capable of expecting remarkable increase(s) in communication capacity using beamforming on a wide frequency band in next generation communication supporting a millimeter wave (mmWave) band.
Abstract:
The present invention relates to a method and a device for selecting and allocating a transmission beam index having a priority. The present invention, in this regard, relates to a method for transmission and reception by a base station in a wireless communication system capable of configuring a plurality of beams, the method comprising the steps of: transmitting a reference signal, using at least one transmission beam; receiving index information of the at least one transmission beam from a terminal; and scheduling a beam corresponding to one piece of information among the index information of the at least one transmission beam for the terminal, wherein the index information is the index information of the at least one transmission beam selected by the terminal on the basis of the priority pre-configured for the plurality of beams.
Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as long term evolution (LTE). An apparatus and a method for performing beamforming by using an antenna array in a wireless communication system are provided. The apparatus includes at least one antenna array comprising antenna elements, a control unit configured to determine a number of beams to be formed through the at least one antenna array, and a communication unit configured to adjust paths associated with the antenna elements in order to configure as many antenna subsets as the number of the beams, and to form at least one beam through at least one antenna subset configured from the at least one antenna array.
Abstract:
A method and apparatus are provided for transmitting a random access preamble in a wireless communication system. The method includes estimating path loss based on a downlink signal received from a base station; selecting a random access region based on the estimated path loss; determining a transmission power, based on a false alarm probability of the selected random access region; and transmitting the random access preamble to the base station, based on the determined transmission power.
Abstract:
A communication method and system for converging a fifth generation (5G) communication system for supporting higher data rates beyond a fourth generation (4G) system with a technology for internet of things (IoT) are provided. The communication method and system may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method of a terminal for receiving data in a cellular network is provided. The method comprises receiving a synchronization signal block (SS block) including at least one synchronization signal and a broadcast channel from a base station, identifying an offset between the SS block and a resource block (RB) grid from system information in the broadcast channel, and determining the resource block grid based on the offset.
Abstract:
A method performed by a user equipment (UE) in a wireless communication system is provided. The method includes transmitting, to a base station, UE capability information indicating whether the UE supports transmission of a long physical uplink control channel (PUCCH) format and a short PUCCH format in a same slot, receiving, from the base station, information on a PUCCH resource configuration, and transmitting, to the base station, two PUCCHs within a slot using the long PUCCH format and the short PUCCH format, based on the PUCCH resource configuration.
Abstract:
Disclosed is a 5G or pre-5G communication system for supporting a data transmission rate higher than that of a 4G communication system such as LTE. According to the present disclosure, a method of a terminal in a wireless communication system comprises the steps of: receiving downlink control information (DCI); confirming whether the DCI is uplink DCI for an uplink or downlink DCI for a downlink; and transmitting, through an uplink control channel or an uplink data channel, uplink control information (UCI) according to the confirmation result.