Abstract:
A method for analyzing a formation includes entering into a computer a number of detected gamma rays resulting from imparting neutrons into the formation. The detected gamma rays are characterized by energy levels thereof. A number of detected gamma rays in each energy level comprises a measured spectrum. In the computer, a non-Gaussian filter is applied to a reference spectrum to match the measured spectrum in shape. The filtered reference spectrum and measured spectrum are used to determine a fractional volume of at least one component of the formation.
Abstract:
A method for determining a fractional volume of at least one component of a formation includes entering into a computer a number of detected radiation events resulting from imparting neutrons into the formation at an energy level of at least 1 million electron volts (MeV). The detected radiation events correspond to at least one of an energy level of the imparted neutrons and thermal or epithermal energy neutrons. A measurement of at least one additional petrophysical parameter of the formation is made. The at least one additional petrophysical parameter measurement and at least one of a fast neutron cross-section and a thermal neutron cross-section determined from the detected radiation events are used in the computer to determine the fractional volume of the at least one component of the formation. In another embodiment, the fast neutron cross-section and the thermal neutron cross-section may be used on combination to determine the fractional volume.
Abstract:
A method for pulsed neutron well logging of a subsurface formation, includes irradiating the formation with a plurality of bursts of neutrons of a group of selected durations; detecting gamma rays resulting from interaction of the neutrons during a group of selected time gates which contains at least some early and late gamma ray counts. The gamma rays are detected at at least two axially spaced apart locations from a position of the irradiating. In a computer, a ratio TRat is determined between the sum of detected gamma rays at a first axial spacing to the sum at a second axial spacing. A borehole correction is performed according to a function related to the ratio TRat before converting the ratio TRat to a hydrogen index or porosity of the subsurface formation.
Abstract:
A method for determining a petrophysical property of a formation includes detecting radiation events resulting from imparting neutrons into the formation at an energy level of at least 1 MeV. The petrophysical property is determined from an elastic scattering cross section of the formation. The elastic scattering cross-section related to a number of detected radiation events.
Abstract:
A method for pulsed neutron well logging of a subsurface formation, includes irradiating the formation with a plurality of bursts of neutrons of a group of selected durations; detecting gamma rays resulting from interaction of the neutrons during a group of selected time gates which contains at least some early and late gamma ray counts. The gamma rays are detected at at least two axially spaced apart locations from a position of the irradiating. A weighted sum of the numbers of gamma rays detected in each of the time gates is calculated. A ratio of the weighted sum of detected gamma rays at a first axial spacing to the weighted sum at a second axial spacing is determined. The ratio is used to determine a hydrogen index of the subsurface formation.
Abstract:
A method for pulsed neutron well logging of a subsurface formation, includes irradiating the formation with a plurality of bursts of neutrons of a group of selected durations; detecting gamma rays resulting from interaction of the neutrons during a group of selected time gates which contains at least some early and late gamma ray counts. The gamma rays are detected at at least two axially spaced apart locations from a position of the irradiating. A weighted sum of the numbers of gamma rays detected in each of the time gates is calculated. A ratio of the weighted sum of detected gamma rays at a first axial spacing to the weighted sum at a second axial spacing is determined. The ratio is used to determine a hydrogen index of the subsurface formation.