Systems and methods for formation fluid sampling

    公开(公告)号:US11384637B2

    公开(公告)日:2022-07-12

    申请号:US14534813

    申请日:2014-11-06

    Abstract: Embodiments of the disclosure can include systems and methods for formation fluid sampling. In one embodiment, a method can include monitoring a relationship between a first characteristic of a formation fluid extracted from a formation and a second characteristic of the formation fluid extracted from the formation, determining, based at least in part on the monitoring, that a linear trend is exhibited by the relationship between the first characteristic of the formation fluid extracted from the formation and the second characteristic of the formation fluid extracted from the formation, and determining a reservoir fluid breakthrough based at least in part on the identification of the linear trend, wherein the reservoir fluid breakthrough is indicative of virgin reservoir fluid entering a sampling tool.

    Estimating Contamination During Focused Sampling

    公开(公告)号:US20200072047A1

    公开(公告)日:2020-03-05

    申请号:US16677040

    申请日:2019-11-07

    Abstract: Disclosed are methods and apparatus pertaining to processing in-situ, real-time data associated with fluid obtained by a downhole sampling tool. The processing includes generating a population of values for Ĉ, where each value of Ĉ is an estimated value of a fluid property for native formation fluid within the obtained fluid. The obtained data is iteratively fit to a predetermined model in linear space. The model relates the fluid property to pumpout volume or time. Each iterative fitting utilizes a different one of the values for Ĉ. A value Ĉ* is identified as the one of the values Ĉ that minimizes model fit error in linear space based on the iterative fitting. Selected values Ĉ that are near Ĉ* are then assessed to determine which one has a minimum integral error of nonlinearity in logarithmic space.

    Downhole fluid analysis methods for determining viscosity

    公开(公告)号:US10480316B2

    公开(公告)日:2019-11-19

    申请号:US15822293

    申请日:2017-11-27

    Abstract: The present disclosure relates to methods and apparatus for determining a viscosity-pressure profile of downhole fluid by measuring the viscosity at several different pressures during a sampling operation. According to certain embodiments, the viscosity may be measured at different times during a sampling operation and used to generate the viscosity-pressure profile. For example, the viscosity may be measured at the beginning of pumping, during filling of a sample chamber, during a pressure-build up period, and while retracting the probe. The measured viscosities may then be employed to determine a profile that represents the change in viscosity that occurs with pressure.

    Estimating contamination during focused sampling

    公开(公告)号:US10472960B2

    公开(公告)日:2019-11-12

    申请号:US14975708

    申请日:2015-12-18

    Abstract: Disclosed are methods and apparatus pertaining to processing in-situ, real-time data associated with fluid obtained by a downhole sampling tool. The processing includes generating a population of values for Ĉ, where each value of Ĉ is an estimated value of a fluid property for native formation fluid within the obtained fluid. The obtained data is iteratively fit to a predetermined model in linear space. The model relates the fluid property to pumpout volume or time. Each iterative fitting utilizes a different one of the values for Ĉ. A value Ĉ* is identified as the one of the values for Ĉ that minimizes model fit error in linear space based on the iterative fitting. Selected values for Ĉ that are near Ĉ* are then assessed to determine which one has a minimum integral error of nonlinearity in logarithmic space.

    Downhole Real-Time Filtrate Contamination Monitoring

    公开(公告)号:US20190264560A1

    公开(公告)日:2019-08-29

    申请号:US16411845

    申请日:2019-05-14

    Abstract: A method includes identifying linearly behaving data within obtained data associated with fluid obtained from a subterranean formation. Shrinkage factor is determined based on the linearly behaving data. A function relating GOR data of the obtained fluid with the determined shrinkage factor is determined. A first linear relationship between optical density (OD) data of the obtained fluid and the function is determined. A second linear relationship between density data of the obtained fluid and the function is determined. An oil-based mud (OBM) filtrate contamination property of OBM filtrate within the obtained fluid based on the first linear relationship is determined. A native formation property of native formation fluid within the obtained fluid based on the second linear relationship is determined. A volume fraction of OBM filtrate contamination within the obtained fluid based on the OBM filtrate contamination property and the native formation property is estimated.

    Data extraction for OBM contamination monitoring

    公开(公告)号:US10294785B2

    公开(公告)日:2019-05-21

    申请号:US14975700

    申请日:2015-12-18

    Abstract: Disclosed are methods and apparatus obtaining in-situ, real-time data associated with a sample stream obtained by a downhole sampling apparatus disposed in a borehole that extends into a subterranean formation. The obtained data includes multiple fluid properties of the sample stream. The sample stream includes native formation fluid from the subterranean formation and filtrate contamination resulting from formation of the borehole in the subterranean formation. The obtained data is filtered to remove outliers. The filtered data is fit to each of a plurality of models each characterizing a corresponding one of the fluid properties as a function of a pumpout volume or time of the sample stream. Based on the fitted data, a start of a developed flow regime of the native formation fluid within the subterranean formation surrounding the borehole is identified.

Patent Agency Ranking