-
41.
公开(公告)号:US20230327095A1
公开(公告)日:2023-10-12
申请号:US18204451
申请日:2023-06-01
Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
Inventor: Yohei MOMMA , Takahiro KAWAKAMI , Teruaki OCHIAI , Masahiro TAKAHASHI
IPC: H01M4/46 , H01M4/1391 , H01M4/62 , H01M4/36 , C01G51/00 , H01M4/525 , H01M4/131 , H01M10/0525
CPC classification number: H01M4/466 , H01M4/1391 , H01M4/62 , H01M4/366 , C01G51/42 , H01M4/525 , H01M4/625 , H01M4/131 , H01M10/0525 , C01P2002/85 , C01P2004/04 , C01P2006/40 , C01P2002/00 , G01N23/2273
Abstract: Provided is a positive electrode active material for a lithium ion secondary battery having favorable cycle characteristics and high capacity. A covering layer containing aluminum and a covering layer containing magnesium are provided on a superficial portion of the positive electrode active material. The covering layer containing magnesium exists in a region closer to a particle surface than the covering layer containing aluminum is. The covering layer containing aluminum can be formed by a sol-gel method using an aluminum alkoxide. The covering layer containing magnesium can be formed as follows: magnesium and fluorine are mixed as a starting material and then subjected to heating after the sol-gel step, so that magnesium is segregated.
-
42.
公开(公告)号:US20230327075A1
公开(公告)日:2023-10-12
申请号:US18204432
申请日:2023-06-01
Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
Inventor: Teruaki OCHIAI , Takahiro KAWAKAMI , Mayumi MIKAMI , Yohei MOMMA , Masahiro TAKAHASHI , Ayae TSURUTA
IPC: H01M4/131 , H01M4/1315 , H01M4/1391 , H01M4/62 , H01M4/13915 , H01M4/134 , H01M4/36 , H01M4/525 , H01M4/86
CPC classification number: H01M4/131 , H01M4/1315 , H01M4/1391 , H01M4/625 , H01M2004/021 , H01M4/134 , H01M4/366 , H01M4/525 , H01M4/8657 , H01M4/13915
Abstract: A positive electrode active material which can improve cycle characteristics of a secondary battery is provided. Two kinds of regions are provided in a superficial portion of a positive electrode active material such as lithium cobaltate which has a layered rock-salt crystal structure. The inner region is a non-stoichiometric compound containing a transition metal such as titanium, and the outer region is a compound of representative elements such as magnesium oxide. The two kinds of regions each have a rock-salt crystal structure. The inner layered rock-salt crystal structure and the two kinds of regions in the superficial portion are topotaxy; thus, a change of the crystal structure of the positive electrode active material generated by charging and discharging can be effectively suppressed. In addition, since the outer coating layer in contact with an electrolyte solution is the compound of representative elements which is chemically stable, the secondary battery having excellent cycle characteristics can be obtained.
-
43.
公开(公告)号:US20230216079A1
公开(公告)日:2023-07-06
申请号:US18121065
申请日:2023-03-14
Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
Inventor: Teruaki OCHIAI , Takahiro KAWAKAMI , Mayumi MIKAMI , Yohei MOMMA , Ayae TSURUTA , Masahiro TAKAHASHI
IPC: H01M4/583 , H01M10/0525 , H01M4/58 , H01M10/0568 , H01M10/0569
CPC classification number: H01M4/583 , H01M10/0525 , H01M4/5825 , H01M10/0568 , H01M10/0569 , H01M2004/021
Abstract: Positive electrode active material particles that inhibit a decrease in capacity due to charge and discharge cycles are provided. A high-capacity secondary battery, a secondary battery with excellent charge and discharge characteristics, or a highly-safe or highly-reliable secondary battery is provided. A novel material, active material particles, and a storage device are provided. The positive electrode active material particle includes a first region and a second region in contact with the outside of the first region. The first region contains lithium, oxygen, and an element M that is one or more elements selected from cobalt, manganese, and nickel. The second region contains the element M, oxygen, magnesium, and fluorine. The atomic ratio of lithium to the element M (Li/M) measured by X-ray photoelectron spectroscopy is 0.5 or more and 0.85 or less. The atomic ratio of magnesium to the element M (Mg/M) is 0.2 or more and 0.5 or less.
-
44.
公开(公告)号:US20230197921A1
公开(公告)日:2023-06-22
申请号:US18085682
申请日:2022-12-21
Applicant: Semiconductor Energy Laboratory Co., Ltd.
Inventor: Takahiro KAWAKAMI , Yohei MOMMA , Teruaki OCHIAI , Tatsuya IKENUMA
CPC classification number: H01M4/0404 , H01M4/13 , H01M4/0471 , H01M4/139 , H01M4/625 , H01M2220/30
Abstract: In manufacturing a storage battery electrode, a method for manufacturing a storage battery electrode with high capacity and stability is provided. As a method for preventing a mixture for forming an active material layer from becoming strongly basic, a first aqueous solution is formed by mixing an active material exhibiting basicity with an aqueous solution exhibiting acidity and including an oxidized derivative of a first conductive additive; a first mixture is formed by reducing the oxidized derivative of the first conductive additive by drying the first aqueous solution; a second mixture is formed by mixing a second conductive additive and a binder; a third mixture is formed by mixing the first mixture and the second mixture; and a current collector is coated with the third mixture. The strong basicity of the mixture for forming an active material layer is lowered; thus, the binder can be prevented from becoming gelled.
-
公开(公告)号:US20230051128A1
公开(公告)日:2023-02-16
申请号:US17976925
申请日:2022-10-31
Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
Inventor: Masahiro TAKAHASHI , Teruaki OCHIAI , Yohei MOMMA , Ayae TSURUTA
Abstract: A positive electrode active material particle with little deterioration is provided. A power storage device with little deterioration is provided. A highly safe power storage device is provided. The positive electrode active material particle includes a first crystal grain, a second crystal grain, and a crystal grain boundary positioned between the crystal grain and the second crystal grain; the first crystal grain and the second crystal grain include lithium, a transition metal, and oxygen; the crystal grain boundary includes magnesium and oxygen; and the positive electrode active material particle includes a region where the ratio of the atomic concentration of magnesium in the crystal grain boundary to the atomic concentration of the transition metal in first crystal grain and the second crystal grain is greater than or equal to 0.010 and less than or equal to 0.50.
-
46.
公开(公告)号:US20220352510A1
公开(公告)日:2022-11-03
申请号:US17852407
申请日:2022-06-29
Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
Inventor: Takahiro KAWAKAMI , Teruaki OCHIAI , Shuhei YOSHITOMI , Takuya HIROHASHI , Mako MOTOYOSHI , Yohei MOMMA , Junya GOTO
IPC: H01M4/505 , H01M4/131 , H01M4/36 , H01M4/1391
Abstract: To increase capacity per weight of a power storage device, a particle includes a first region, a second region in contact with at least part of a surface of the first region and located on the outside of the first region, and a third region in contact with at least part of a surface of the second region and located on the outside of the second region. The first and the second regions contain lithium and oxygen. At least one of the first region and the second region contains manganese. At least one of the first and the second regions contains an element M. The first region contains a first crystal having a layered rock-salt structure. The second region contains a second crystal having a layered rock-salt structure. An orientation of the first crystal is different from an orientation of the second crystal.
-
公开(公告)号:US20220285681A1
公开(公告)日:2022-09-08
申请号:US17750436
申请日:2022-05-23
Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
Inventor: Mayumi MIKAMI , Aya UCHIDA , Yumiko YONEDA , Yohei MOMMA , Masahiro TAKAHASHI , Teruaki OCHIAI
IPC: H01M4/525 , C01G53/00 , H01M4/131 , H01M4/133 , H01M4/134 , H01M4/139 , H01M4/36 , H01M4/505 , H01M10/0525 , H01M6/16
Abstract: A positive electrode active material having high capacity and excellent cycle performance is provided. The positive electrode active material has a small difference in a crystal structure between the charged state and the discharged state. For example, the crystal structure and volume of the positive electrode active material, which has a layered rock-salt crystal structure in the discharged state and a pseudo-spinel crystal structure in the charged state at a high voltage of approximately 4.6 V, are less likely to be changed by charge and discharge as compared with those of a known positive electrode active material.
-
公开(公告)号:US20220285673A1
公开(公告)日:2022-09-08
申请号:US17690073
申请日:2022-03-09
Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
Inventor: Takahiro KAWAKAMI , Teruaki OCHIAI , Yohei MOMMA , Ayae TSURUTA , Masahiro Takahashi , Mayumi MIKAMI
IPC: H01M4/36 , H01M4/04 , H01M4/62 , H01G11/24 , H01G11/86 , H01G11/50 , H01G11/60 , H01M4/505 , H01M4/525
Abstract: Provided is a positive electrode active material which suppresses a reduction in capacity due to charge and discharge cycles when used in a lithium ion secondary battery. A covering layer is formed by segregation on a superficial portion of the positive electrode active material. The positive electrode active material includes a first region and a second region. The first region exists in an inner portion of the positive electrode active material. The second region exists in a superficial portion of the positive electrode active material and part of the inner portion thereof. The first region includes lithium, a transition metal, and oxygen. The second region includes magnesium, fluorine, and oxygen.
-
公开(公告)号:US20220200041A1
公开(公告)日:2022-06-23
申请号:US17689450
申请日:2022-03-08
Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
Inventor: Teruaki OCHIAI , Takahiro KAWAKAMI , Mayumi MIKAMI , Yohei MOMMA , Ayae TSURUTA , Masahiro TAKAHASHI
IPC: H01M10/0525 , H01M4/505 , H01M4/485 , H01M4/02 , H01M4/525
Abstract: Positive electrode active material particles that inhibit a decrease in capacity due to charge and discharge cycles are provided. A high-capacity secondary battery, a secondary battery with excellent charge and discharge characteristics, or a highly-safe or highly-reliable secondary battery is provided. A novel material, active material particles, and a storage device are provided. The positive electrode active material particle includes a first region and a second region in contact with the outside of the first region. The first region contains lithium, oxygen, and an element M that is one or more elements selected from cobalt, manganese, and nickel. The second region contains the element M, oxygen, magnesium, and fluorine. The atomic ratio of lithium to the element M (Li/M) measured by X-ray photoelectron spectroscopy is 0.5 or more and 0.85 or less. The atomic ratio of magnesium to the element M (Mg/M) is 0.2 or more and 0.5 or less.
-
公开(公告)号:US20220199983A1
公开(公告)日:2022-06-23
申请号:US17687782
申请日:2022-03-07
Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
Inventor: Takahiro KAWAKAMI , Teruaki OCHIAI , Yohei MOMMA , Ayae TSURUTA , Masahiro Takahashi , Mayumi MIKAMI
IPC: H01M4/36 , H01M4/04 , H01M4/62 , H01G11/24 , H01G11/86 , H01G11/50 , H01G11/60 , H01M4/505 , H01M4/525
Abstract: Provided is a positive electrode active material which suppresses a reduction in capacity due to charge and discharge cycles when used in a lithium ion secondary battery. A covering layer is formed by segregation on a superficial portion of the positive electrode active material. The positive electrode active material includes a first region and a second region. The first region exists in an inner portion of the positive electrode active material. The second region exists in a superficial portion of the positive electrode active material and part of the inner portion thereof. The first region includes lithium, a transition metal, and oxygen. The second region includes magnesium, fluorine, and oxygen.
-
-
-
-
-
-
-
-
-