Abstract:
An organic light-emitting diode display is disclosed. The display includes a semiconductor layer formed over a substrate, a scan line formed over the semiconductor layer and configured to provide a scan signal, and a light emission control line formed over the semiconductor layer and configured to provide a light emission control signal. The display includes a data line configured to provide a data voltage and a driving voltage line configured to provide a driving voltage, wherein the driving voltage line crosses the scan line and is electrically insulated from the scan line. A switching transistor is electrically connected to the scan line and the data line and includes a switching drain electrode. A driving transistor includes a driving source electrode electrically connected to the switching drain electrode. Any one of the semiconductor layer and the light emission control line includes an extension at least partially overlapping the data line.
Abstract:
Provided are an organic light emitting display apparatus and a method of manufacturing the same. The apparatus includes a substrate including a display area and a peripheral area outside the display area, a plurality of thin film transistors (TFTs) disposed in the peripheral area of the substrate, a first insulating layer covering the plurality of TFTs, a plurality of conductive layers disposed on the first insulating layer to be located above the plurality of TFTs and to be mutually separated to correspond to spaces among the plurality of TFTs, a second insulating layer covering spaces among the plurality of conductive layers, and an opposite electrode corresponding to the display area and the peripheral area of the substrate, covering the second insulating layer, and being in contact with at least portions of the conductive layers.
Abstract:
A driver includes a first circuit to output a scan signal and a second circuit to output an emission control signal. The first circuit outputs the scan signal based on a first set of clock signals, and the second circuit outputs the emission control signal based on a second set of clock signals. The first set of clock signals and the second set of clock signals have at least one same clock signal and at least one different clock signal. The second circuit receives the scan signal and outputs the emission control signal based on the scan signal. The first circuit may be a scan driver and the second circuit may be an emission control driver of a display device.
Abstract:
A pixel and organic light-emitting diode (OLED) display are disclosed. In one aspect, the pixel includes an organic light-emitting diode (OLED) configured to emit light based on a driving current. The OLED includes first and second electrodes. The pixel also includes a first transistor configured to generate the driving current. The first transistor includes a gate electrode, a first electrode, and a second electrode. The pixel further includes a capacitor transistor including a gate electrode configured to receive a gate turn-on voltage, a first electrode, a second electrode electrically connected to the first electrode of the first transistor. The capacitor transistor further includes a channel located between the first and second electrodes of the capacitor transistor. The channel of the capacitor transistor is configured to be activated by the gate turn-on voltage.
Abstract:
A liquid crystal display (LCD) panel is disclosed. The LCD panel includes a plurality of pixels arranged in rows and columns, a first sub gate-line coupled to first row-pixels that are adjacent to a lower side of the first sub gate-line, a second sub gate-line coupled to second row-pixels that are adjacent to an upper side of the second sub gate-line, a plurality of gate-lines between the first sub gate-line and the second sub gate-line, a plurality of even data-lines coupled to first column-pixels that are adjacent to the even data-lines, and a plurality of odd data-lines coupled to second column-pixels that are adjacent to the odd data-lines. Here, each gate-line of the plurality of gate lines is coupled to first row-pixels that are adjacent to a lower side of the gate-line and second row-pixels that are adjacent to an upper side of the gate-line.
Abstract:
In a scan lines driver that is used for driving scan lines of an organic light emitting diodes (OLED) display, a large voltage drop can develop between the gate or source of one of its transistors and the corresponding drain during a scan signal outputting period. This large voltage drop can excessively stress the one transistor. However, in accordance with the present disclosure, a voltage drop dissipating, second transistor is provided in series with the first transistor for absorbing part of the large voltage drop and thus reducing the stress that is applied to the first transistor.
Abstract:
A display device may include a display panel including a plurality of pixels, a data driver which applies data signals to the display panel, a scan driver including scan stages, which sequentially applies scan signals to the display panel, an emission driver including an emission stage which sequentially applies emission signals to the display panel, and a power supply voltage generator which generates a power supply voltage including high voltages and low voltages, and provides the high voltages having different voltage levels from each other or the low voltages having different voltage levels from each other to at least one selected from the scan stages and the emission stage. The power supply voltage generator generates a first high voltage, a first low voltage, a second high voltage lower than the first high voltage, and a second low voltage higher than the first low voltage based on an input voltage.
Abstract:
A display device includes a substrate having a first region in which an image is displayed, a second region in which an image is not displayed, and a bending region connecting the first region and the second region. The bending region is configured to bend along a bending axis which extends in a first direction. A plurality of pad terminals is disposed within the second region. A first width of the bending region, measured along the first direction, is narrower than a second width of the second region, measured along the first direction.
Abstract:
A display device including: a substrate including a display area for displaying an image and a non-display area positioned at a periphery of the display area; a plurality of pixels positioned at the display area; a plurality of data lines connected with the plurality of pixels; and a crack detecting line positioned at the non-display area, wherein the crack detecting line includes: a plurality of unit connectors extending in a first direction, wherein the first direction is parallel to an extending direction of a side of the substrate nearest to the unit connectors; and a plurality of wiring portion units connected to each other through the plurality of unit connectors, wherein the number of wiring portion units is an even number.
Abstract:
A display apparatus includes a substrate including a display area, a peripheral area surrounding the display area, a function-adding area, of which at least a portion is surrounded by the display area, and a detour area disposed between the display area and the function-adding area. The display apparatus includes a plurality of pixel circuits disposed in the display area. A plurality of driving lines are electrically connected to the pixel circuits and extend in a direction in the display area. A first detour line is disposed in the detour area and is electrically connected to a first driving line. A second detour line is disposed in the detour area. The second detour line is electrically connected to a second driving line and is disposed in a different layer from the first detour line.