Abstract:
A display panel including a main display area and a component area having an auxiliary display area and a transmission area, a substrate, a plurality of main display elements arranged on the substrate in the main display area, and a plurality of main pixel circuits respectively connected to the main display elements, a plurality of auxiliary display elements arranged on the substrate in the auxiliary display area, and a plurality of auxiliary pixel circuits respectively connected to the auxiliary display elements, and an optical functional layer including a polarization area corresponding to the main display area and the auxiliary display area, and a non-polarization area corresponding to the transmission area.
Abstract:
An organic electroluminescence display device includes: a substrate; a first electrode including a first sub-electrode and a second sub-electrode spaced apart from each other and on the substrate; a first light emitting unit on the first electrode; a charge generation unit on the first light emitting unit; a second light emitting unit on the charge generation unit; and a second electrode on the second light emitting unit, wherein the first light emitting unit comprises a first light emitting layer correspondingly on the first sub-electrode; and a second light emitting layer correspondingly on the second sub-electrode, wherein the second light emitting unit comprises a third light emitting layer correspondingly on the first light emitting layer; and a fourth light emitting layer correspondingly on the second light emitting layer.
Abstract:
Disclosed are a novel-structural compound including a 5-membered heterocycle, an organic electronic device using the same, and a terminal thereof.
Abstract:
The present invention provides an organic electric element in which a first electrode, a second electrode, and an organic material layer are sequentially stacked, wherein the organic material layer comprises a hole transport layer, an emission-auxiliary layer and a light emitting layer, at least one of the hole transport layer and the emission-auxiliary layer comprises the compound represented by Formula 1, and the light emitting layer comprises the compound represented by Formula 2. According to the present invention, the driving voltage of an organic electronic device can be lowered, and the luminous efficiency, color purity and life time of an organic electronic device can be improved.
Abstract:
An organic light-emitting display apparatus includes a first sub-pixel, a second sub-pixel, and a third sub-pixel configured to emit different colors of light. The organic light-emitting display apparatus includes: a substrate; first through third pixel electrodes; a first organic emission layer configured to emit light having a first wavelength; a second organic emission layer configured to emit light having a second wavelength; a third organic emission layer configured to emit light having a third wavelength; an opposite electrode; a capping layer over the opposite electrode and having a refractive index with respect to the first wavelength that is higher than a refractive index with respect to the second wavelength by at least 7%; and a thin-film encapsulation layer over the capping layer.
Abstract:
Disclosed are a novel-structural compound including a 5-membered heterocycle, an organic electronic device using the same, and a terminal thereof.
Abstract:
Provided herein are a compound of Formula 1, and an organic electric element comprised of a first electrode, a second electrode, and an organic material layer between the first electrode and the second electrode containing a compound of Formula 1, which has an improvement in driving voltage, luminous efficiency, color purity, stability, and life span.
Abstract:
Disclosed is a compound represented by Formula 1, an organic electric element comprising a first electrode, a second electrode, and an organic material layer between the first electrode and the second electrode, and an electronic device comprising the organic electric element, wherein the organic material layer comprises the compound of Formula 1 to reduce driving voltage and improve luminous efficiency, and life span.
Abstract:
A compound represented by Formula 1. An organic electric element includes a first electrode, a second electrode, and an organic material layer between the first electrode and the second electrode. The organic material layer includes the compound represented by Formula 1. When the organic electric element includes the compound in the organic material layer, driving voltage, luminous efficiency, color purity, stability, and life span can be improved.