Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. In an embodiment, a method for encoding information bits includes receiving the information bits, encoding the information bits by using a block code, and outputting a codeword generated as a result of the encoding. A length of the information bits is a maximum of 13 bits, and the block code is composed of a Walsh basis sequence and a mask basis sequence.
Abstract:
The present invention related to a 5G or pre-5G communication system to be provided to support a higher data transmission rate since 4G communication systems like LTE. The present invention relates to a method and an apparatus for encoding a channel in a communication or broadcasting system supporting parity-check matrices having various sizes are provided. The method for encoding a channel includes determining a block size of the parity-check matrix; reading a sequence for generating the parity-check matrix, and transforming the sequence by applying a previously defined operation to the sequence based on the determined block size.
Abstract:
An encoding method for encoding input information bits using an encoder implemented with concatenation of a CRC-α coder and a polar coder is provided. The method includes performing Cyclic Redundancy Check (CRC) coding on as many information bits as a determined number of CRC coding bits among input information bits and performing polar coding on the CRC-coded information bits and other information bits than the CRC-coded information bits.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A channel encoding method in a communication or broadcasting system includes identifying an input bit size, determining a block size (Z), determining an LDPC sequence for LDPC encoding, and performing the LDPC encoding based on the LDPC sequence and the block size.
Abstract:
A pre-5th-generation (pre-5G) or 5G communication system for supporting higher data rates beyond a 4th-generation (4G) communication system, such as long term evolution (LTE) is provided. A channel encoding method in a communication or broadcasting system includes identifying an input bit size, determining a block size (Z), determining a low density parity check (LDPC) sequence to perform LDPC encoding, and performing the LDPC encoding based on the LDPC sequence and the block size.
Abstract:
The present invention related to a 5G or pre-5G communication system to be provided to support a higher data transmission rate since 4G communication systems like LTE. The present invention relates to a method and an apparatus for encoding a channel in a communication or broadcasting system supporting parity-check matrices having various sizes are provided. The method for encoding a channel includes determining a block size of the parity-check matrix; reading a sequence for generating the parity-check matrix, and transforming the sequence by applying a previously defined operation to the sequence based on the determined block size.
Abstract:
The disclosure relates to a communication technique for convergence between an IoT technology and a 5G communication system for supporting a higher data transmission rate beyond a 4G system, and a system thereof. The disclosure may be applied to intelligence services (for example, smart homes, smart buildings, smart cities, smart cars or connected cars, healthcare, digital education, retail businesses, security and safety related services, etc.) based on a 5G communication technology and an IoT-related technology. The disclosure provides a method for transmitting uplink control information and/or uplink data by a terminal according to multiple priorities, a method for receiving uplink control information and/or uplink data by a base station according to multiple priorities, and an apparatus therefor.
Abstract:
The disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as long term evolution (LTE). An operating method of a user equipment (UE) in a communication system includes performing radio resource control (RRC) signaling with a base station, determining a code rate based on an RRC configuration according to the RRC signaling, and determining a size of data using the code rate.
Abstract:
A communication method for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The method includes identifying a length of information bits to be encoded; identifying a length of transmission bits; determining a size of a code for a polar encoding based on the length of the transmission bits, a maximum size of the code, and a minimum size of the code; identifying a codeword by the polar encoding of the information bits based on the determined size of the code; and obtaining the transmission bits based on the length of the transmission bits.
Abstract:
An encoding method for encoding input information bits using an encoder implemented with concatenation of a CRC-α coder and a polar coder is provided. The method includes performing Cyclic Redundancy Check (CRC) coding on as many information bits as a determined number of CRC coding bits among input information bits and performing polar coding on the CRC-coded information bits and other information bits than the CRC-coded information bits.