Abstract:
A method performed by an open radio access network (O-RAN) distributed unit (O-DU) in a wireless communication system, the method includes: generating a control plane message comprising User Equipment (UE) scheduling information; and transmitting the control plane message to an open radio access network (O-RAN) radio unit (O-RU). The control plane message further includes section extension information. The section extension information comprises bit masking information indicating antennas to be combined.
Abstract:
A communication method and system for converging a 5th-generation (5G) communication system for supporting higher data rates beyond a 4th-generation (4G) system with a technology for internet of things (IoT) are provided. The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The method and apparatus for polar encoding and rate-matching are disclosed.
Abstract:
A system and method of generating a control message of a digital unit (DU) of a base station in a wireless communication system supporting lower layer function division, and a system and method of processing a control message of a radio unit (RU) of the base station are provided. The system and method provide an RU of the base station that does not need to analyze the subframe structure in association with other control plane sections, such that processing time and processing complexity can be reduced.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). According to embodiments, a method performed by a distributed unit (DU), the method comprises generating a control plane (C-plane) message for multiple ports, the C-plane message including section information and a section extension; and transmitting the C-plane message to a radio unit (RU) via a specific port of the multiple ports. The section information includes information on a beam identifier (ID). The section extension includes beam group type information for indicating a type of beam grouping, and port information for indicating a total number of one or more extended antenna-carrier (eAxC) ports indicated by the section extension.
Abstract:
A communication method and system for converging a 5th-generation (5G) communication system for supporting higher data rates beyond a 4th-generation (4G) system with a technology for internet of things (IoT) are provided. The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The method and apparatus for polar encoding and rate-matching are disclosed.
Abstract:
The disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system, such as Long Term Evolution (LTE). A method for coding a channel in a communication system is provided. The method includes coding information to be transmitted with an outer code, generating an input sequence by allocating outer coded symbols sequentially from a sub-channel having a large capacity based on a polar code sequence, the input sequence having a value of 2n and n being a preset value, coding the input sequence with the polar code, interleaving the polar coded symbols of the polar coded input sequence according to a predetermined scheme in consideration of a modulation symbol, and modulating the interleaved polar coded symbols.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data transfer rate beyond a 4G communication system, such as LTE. One embodiment of the present invention provides a method for channel encoding in a communication system, the method comprising: encoding second data, using an outer channel code; determining a value corresponding to first data; arranging the encoded second data in a block size unit corresponding to the second data, based on the determined value; and encoding the arranged second data, using an inner channel code.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. In an embodiment, a method for encoding information bits includes receiving the information bits, encoding the information bits by using a block code, and outputting a codeword generated as a result of the encoding. A length of the information bits is a maximum of 13 bits, and the block code is composed of a Walsh basis sequence and a mask basis sequence.
Abstract:
A method for a transmitter of a mobile communication system transmitting and receiving signals according to an embodiment of the present specification comprises the steps of transmitting to a receiver system information for transmitting a signal to the receiver including a connection between a wireless resource and a transmitting antenna; transmitting a reference signal to the receiver based on the system information; and receiving from the receiver feedback information generated based on the reference signal. According to an embodiment of the present specification, in a beamforming transmission method of a mobile communication system, a transmitter can determine whether to perform digital pre-coding without advance information from a receiver and can consequently perform a transmission, and can thereby perform lower-overhead and efficient signal transmission/reception.
Abstract:
The present disclosure relates to a 5th (5G) generation) or pre-5G communication system for supporting a higher data transmission rate beyond a 4th (4G) generation communication system such as long term evolution (LTE). An operating method of a base station in a wireless communication system according to various embodiments of the present disclosure includes generating at least one compressed symbol based on modulation compression, transmitting to another base station, control information including position indication information which indicates a position of a subcarrier at which a first subcarrier signal is transmitted in a physical resource block (PRB) to which the at least one compressed symbol is mapped, and power indication information for indicating a transmit power of the first subcarrier signal, and transmitting the at least one compressed symbol to the another base station. Thus, transmission capacity may be optimized, and efficient modulation compression is possible.