Abstract:
A drill string includes drill pipe and a modular fracturing sub. A processor can control the drill string to drill a wellbore to some desired depth. The drill string is positioned at a desired location in the wellbore and a section of the wellbore is hydraulically isolated, forming a cavity. Existing fluid may be evacuated from the cavity and fracturing fluid injected into the cavity until a desired level of fracturing is attained. Retrievable packers are used for the hydraulic isolation. A pump evacuates the existing fluid via ports in the fracturing sub. The ports may also be used when injecting fracturing fluid. Seismic sensors may be distributed along the drill string to monitor fracture growth. Logging-while-drilling tools may be integrated into the drill string. Fluid from the lower portion of the wellbore is blocked by a lower sealing unit on a bottomhole assembly.
Abstract:
A NMR logging tool is provided and disposed at some desired depth in a wellbore penetrating a subsurface formation. A first set of NMR measurements is made over a desired depth range and depth of investigation, wherein the first set of NMR measurements includes a first NMR signal intensity. Supercritical carbon dioxide is injected into the formation and a second set of NMR measurements is made over the desired depth range and depth of investigation, wherein the second set of NMR measurements includes a second NMR signal intensity. The first NMR signal intensity is compared to the second NMR signal intensity and one or more properties of the formation are inferred using the compared NMR measurements. A magnetic field gradient that varies a static magnetic field along a desired spatial dimension of a region of investigation may be provided to map a rate of fluid movement.
Abstract:
Systems and methods are described for controlling the location where a fracture initiates and the fracture direction at the initiation point. A mechanical device is positioned in a main wellbore or partially or fully in a side hole off of the main wellbore. The mechanical device is actuated so as to contact the formation walls and induce stress in the formation. According to some embodiments, fractures are also initiated using the mechanical device. A hydraulic fracturing process is then carried out to fracture and/or propagate fractures in locations and/or directions according to the actuation of the mechanical device.
Abstract:
Methods are provided for separating oil and water signals in multidimensional nuclear magnetic resonance (NMR) maps. In one embodiment, separate multidimensional NMR maps are provided for oil and water content. In another embodiment, an oil-water boundary and a water-gas boundary are generated on a D-T2 map. The boundaries may be curved boundaries or lines.
Abstract:
Techniques involve determining the frequency-dependent dielectric permittivity spectrum of a rock sample. Determining the frequency-dependent dielectric permittivity may involve defining a series of electromagnetic measurement data having at least a measurement at a frequency from which a substantially frequency-independent value of dielectric permittivity ε∞ can be obtained. The electromagnetic measurement data also includes measurements at different frequencies from which values for frequency-dependent dielectric permittivity εrock (f) can be obtained. Using these measurements, the frequency-dependent spectrum of the sample may be determined.
Abstract:
In one embodiment, an apparatus includes an antenna having a conductive winding, with the antenna disposed about a channel. A characteristic improvement material is disposed between the antenna and the channel. In some embodiments, the characteristic improvement material includes at least one of a negative stiffness material or a negative Poisson's ratio material. Various systems and methods are also disclosed herein.