Abstract:
A nuclear magnetic resonance (NMR) system that uses a feedback induction coil to detect NMR signals generated within a substance is described herein. In one embodiment, the NMR system uses the Earth's magnetic field in conjunction with a transmitter coil that applies NMR sequences to a formation. The NMR sequences generate a weak NMR signal within the formation due to the weakness of the Earth's magnetic field. This weak NMR signal is detected using the feedback induction coil.
Abstract:
A nuclear magnetic resonance (NMR) system that uses a feedback induction coil to detect NMR signals generated within a substance is described herein. In one embodiment, the NMR system uses the Earth's magnetic field in conjunction with a transmitter coil that applies NMR sequences to a formation. The NMR sequences generate a weak NMR signal within the formation due to the weakness of the Earth's magnetic field. This weak NMR signal is detected using the feedback induction coil.
Abstract:
Techniques involve determining the frequency-dependent dielectric permittivity spectrum of a rock sample. Determining the frequency-dependent dielectric permittivity may involve defining a series of electromagnetic measurement data having at least a measurement at a frequency from which a substantially frequency-independent value of dielectric permittivity ∈∞ can be obtained. The electromagnetic measurement data also includes measurements at different frequencies from which values for frequency-dependent dielectric permittivity ∈rock (f) can be obtained. Using these measurements, the frequency-dependent spectrum of the sample may be determined.
Abstract:
A nuclear magnetic resonance (NMR) system that uses a feedback induction coil to detect NMR signals generated within a substance is described herein. In one embodiment, the NMR system uses the Earth's magnetic field in conjunction with a transmitter coil that applies NMR sequences to a formation. The NMR sequences generate a weak NMR signal within the formation due to the weakness of the Earth's magnetic field. This weak NMR signal is detected using the feedback induction coil.
Abstract:
A nuclear magnetic resonance (NMR) system that uses a feedback induction coil to detect NMR signals generated within a substance is described herein. In one embodiment, the NMR system uses the Earth's magnetic field in conjunction with a transmitter coil that applies NMR sequences to a formation. The NMR sequences generate a weak NMR signal within the formation due to the weakness of the Earth's magnetic field. This weak NMR signal is detected using the feedback induction coil.
Abstract:
Techniques involve determining the frequency-dependent dielectric permittivity spectrum of a rock sample. Determining the frequency-dependent dielectric permittivity may involve defining a series of electromagnetic measurement data having at least a measurement at a frequency from which a substantially frequency-independent value of dielectric permittivity ε∞ can be obtained. The electromagnetic measurement data also includes measurements at different frequencies from which values for frequency-dependent dielectric permittivity εrock (f) can be obtained. Using these measurements, the frequency-dependent spectrum of the sample may be determined.