Abstract:
Methods and wireless sensor nodes for aggregation-driven topology formation in a Wireless Sensor Network (WSN) are provided. A method for aggregation-driven topology formation in a WSN includes aggregating sensor data by one or more first sensor nodes, sending, by each of the one or more first sensor nodes, at least one activity diffusion message to each of at least one neighboring node of one or more second sensor nodes, wherein each activity diffusion message includes an activity diffusion weight, receiving, by each of the one or more second sensor nodes, respective of the at least one activity diffusion message from at least one neighboring node of the one or more first sensor nodes, accumulating, by each of the one or more second sensor nodes, activity diffusion weights included in the at least one activity diffusion message received from the at least one neighboring node of the one or more first sensor nodes, sending, by each of the one or more first sensor nodes, the aggregated data to at least one of the at least one neighboring node of the one or more second sensor nodes, and receiving, by the at least one of the at least one neighboring node of the one or more second sensor nodes, the aggregated data from respective of the one or more first sensor nodes.
Abstract:
In accordance with an embodiment, a method of inserting advertisements into video content includes electronically filtering a first list of advertisements according to user preference data to determine a second list of advertisements. The video content has a plurality of segments, each segment of which is associated with a category from the plurality of categories. Furthermore, each advertisement in the first list of advertisements is associated with a video category from a plurality of categories, and electronically filtering includes filtering the first list of advertisements for the plurality of video segments on a segment by segment basis. The method further includes transmitting the second list of advertisements to a user device for insertion with the video content.
Abstract:
An access network is wirelessly coupled to an access terminal. The access network comprises a plurality of communication modules, a transmitter and a channel estimator. The plurality of communication modules coupled to the access terminal and configured to transmit a plurality of signals. The transmitter coupled to the access terminal and configured to send an index which indicates number of the plurality of signals. The channel estimator, configured to adjust and modulate a channel state information into the plurality of signals.
Abstract:
A sensor profile based data aggregation method for aggregating data in a sensor network, which includes a plurality of sensor nodes, is provided. This method includes steps of determining types of sensors included in the sensor nodes, and generating a sensor profile that includes information on each type of the sensors. The information includes a filtering criterion and aggregation operators defined for the each type of the sensors. Once the sensor profile is created, the profile is parsed into a header file, and the header file is compiled with other sub-modules to generate a sensor profile based aggregation module. The sensor profile based aggregation module is installed in each of the sensor nodes. Whenever, sensor data is received in the sensor node, the data is filtered according to the filtering criterion defined in the sensor profile, and data aggregation is simultaneously with given operators.
Abstract:
A method of configuring a data packet including an orthogonal frequency division multiplexing (OFDM) preamble in a wireless communication system is disclosed. The method includes configuring the data packet to include the OFDM preamble in a first region, a pilot and medium access control (MAC) in a second region, and a data symbol in a third region.
Abstract:
In the receiving side MAC layer timestamping approach, the MPDU structure is changed by adding an extra timestamping field. When a MPDU packet is generated, a captured receiving timestamp is written into the MPDU's timestamp field. The MPDU packet is then forwarded from the PHY to the MAC layer of the wireless sensor node. In the MAC layer, the receiving timestamp is further processed and inserted into a corresponding field of the time synchronization message, which is in turn transmitted to a Time Synchronization module. In the sending side MAC layer timestamping approach, the sending timestamp is captured immediately before the time synchronization message is written into TxFIFO.
Abstract:
A method for advance allocation of one or more resources to a frame for a mobile communication terminal comprises transmitting resource allocation data in advance over several frames to allow for additional diversity in providing a mobile with resource allocation data.
Abstract:
There is provided a method of delivering a nucleic acid molecule to an embryonic stem cell, including a human embryonic stem cell, by infecting the embryonic stem cell with a baculoviral vector comprising the nucleic acid molecule. Embryonic stem cells transduced by this method are useful for treating a disease or disorder in a subject.
Abstract:
A method of transmitting data via a control channel in a wireless communication system is disclosed. More specifically, the method includes transmitting a message including information on which control channel resources are used or unused, and transmitting data via the unused control channel which is allocated to at least one user, wherein the data is an added portion related to at least one sub-packet transmitted on a data channel
Abstract:
A method of transmitting at least one sub-packet in a wireless communication system is disclosed. More specifically, the method includes transmitting at least one sub-packet based on combination of resources from multiple domains, wherein the combination of resources indicate whether to maintain or change the resource arrangement for subsequent transmission.