Abstract:
Systems, methods and apparatus are described to interleave LDPC coded data for reception over a mobile communications channel, such as, for example, a satellite channel. In exemplary embodiments of the present invention, a method for channel interleaving includes segmenting a large LDPC code block into smaller codewords, randomly shuffling the code segments of each codeword and then convolutionally interleaving the randomly shuffled code words. In exemplary embodiments of the present invention, such random shuffling can guarantee that no two consecutive input code segments will be closer than a defined minimum number of code segments at the output of the shuffler. In exemplary embodiments of the present invention, by keeping data in, for example, manageable sub-sections, accurate SNR estimations, which are needed for the best possible LDPC decoding performance, can be facilitated based on, for example, iterative bit decisions.
Abstract:
Systems and methods are presented for transmitting additional data over preexisting differential COFDM signals by modulating existing data carriers with a phase and an amplitude offset. In exemplary embodiments of the present invention, additional data capacity can be achieved for an COFDM signal which is completely backwards compatible with existing satellite broadcast communications systems. In exemplary embodiments of the present invention additional information can be overlayed on an existing signal as a combination of amplitude and phase offset from the original QPSK symbols, applied for each information bit of the overlay data. With two additional levels of modulation, a receiver can demodulate the information from each of the previous stages and combine the information into a suitable format for soft decoding. The first stage of demodulation will be recovery of overlay data from the amplitude modulated D8PSK. Because other amplitude variations due to multi-path are also expected, the data gathered from the FFT in the receiver must be equalized to the channel conditions. After channel equalization has been performed, soft overlay data can then be derived from the distance off the unit circle. In order to recover the phase modulated overlay data, the equalized symbols must first be differentially demodulated and corrected for any common phase error offset. After common phase removal, overlay phase information can be obtained.