摘要:
A method is disclosed for scattered radiation correction in X-ray imaging, and an X-ray imaging system is disclosed for carrying out the method. In at least one embodiment of the method, measurement signals t from an X-ray detector are digitized and converted to logarithmic form, with these measurement signals t having been obtained by radiation through an examination object by the X-ray detector. Correction values which have been obtained from a series development of a logarithm 1n(1−s/t) are subtracted from the measurement signals that have been converted to logarithmic form, with this series development being terminated at the earliest after the first order, where s denotes a previously determined scattered radiation signal from radiation passed through the examination object. At least one embodiment of the method and the associated X-ray imaging system allow scattered radiation to be corrected for with increased accuracy, on the basis of measurement signals that had been converted to logarithmic form.
摘要:
An X-ray detector is disclosed for detecting individual quanta. In at least one embodiment, the X-ray detector includes a plurality of detector elements and an evaluation unit that is connected to the latter for data purposes and is set up in such a way that each detector element is assigned a first energy threshold, wherein in each case one portion of various radiation spectra that can be picked up by the detector element exhibits an energy below the energy threshold, and a further portion of the respective radiation spectrum exhibits an energy above the energy threshold. Further, the energy thresholds of the various detector elements are set in a different fashion in such a way that the ratio between the portion, exhibiting an energy above or below the energy threshold in the case of a first radiation spectrum, of the radiation spectrum and the portion, exhibiting an energy above or below the energy threshold in the case of a second radiation spectrum, of the radiation spectrum is intermatched in the case of the various detector elements.
摘要:
A method is disclosed for a multislice computer assisted tomograph, capable of carrying out a spiral scan of an object volume with a pitch p selected to be small enough that each slice of the object volume is multiply detected during the spiral scan. The method includes calculating, using measured data of two temporally consecutive at least one of revolutions and half revolutions, an image of the object volume from which a change inside the object volume between the two temporally consecutive at least one of revolutions and half revolutions is directly visible. An embodiment of the method can permit, for example, the detection and visualization of dynamic processes with an enhanced time resolution.
摘要:
A detector for x-ray computer tomography scanners, includes a number of adjacent detector lines extending in an x direction, whereby each detector line is formed from a multitude of adjacent scintillator elements. In order to increase the resolution in the z direction and to simplify the design of the detector, the surface of the scintillator elements are partially covered, which further serves to reduce the size of the aperture in the z direction.
摘要:
A method is disclosed for reconstructing a tomographic representation of an object from projection data off a moving radiation source through this object onto a detector, filtering and back projection of the projection data being executed in the reconstruction. In an embodiment of the method, by using at least one identical spatial arrangement of the radiation source, the detector and a test object instead of the object to be scanned, there is determined by test projections and an iterative reconstruction technique, a filter that in the given arrangement results in an optimum filtering and back projection of the projection data of the test object for the tomographic representation. Further, the object is scanned instead of the test object in the given arrangement and projection data are determined. Finally, the reconstruction of the tomographic representation is carried out using these projection data and the filter determined. Moreover, an embodiment of a tomography unit for carrying out this method is also disclosed.
摘要:
A shadow mask and method for adjustment are disclosed. The shadow mask may be for an X-ray detector including detector elements, which may further be provided for a computed tomography unit, for example. The shadow mask has a mask plate with holes of which each is assigned a detector element. At least one adjusting hole of the mask plate includes enlarged dimensions in such a way that it is adapted to the dimensions of at least two detector elements. The adjusting hole serves for the method of adjusting the shadow mask over the X-ray detector. Measurement signals of the detector elements that are assigned to the at least one adjusting hole, are determined by using X-radiation. The shadow mask and the X-ray detector are adjusted relative to one another on the basis of a comparison of the measurement signals of the detector elements.
摘要:
In a method and apparatus for computed tomography, a subject is scanned with a conical ray beam emanating from a focus and the attenuated beam is detected with a matrix-like detector array. The focus is moved on a spiral path around a system axis relative to the subject, and the detector array supplies output data corresponding to the received radiation. The output data are supplied during the motion of the focus on a spiral segment and have a length adequate for the reconstruction of a CT image, and are divided into output datasets with respect to sub-segments. Segment images having an inclined image plane relative to the system axis are reconstructed for the sub-segments. The segment images respectively belonging to the sub-segments are combined into a partial image with respect to a target image plane, and the partial images are combined into a resulting CT image with respect to the target image plane.
摘要:
A method and a computer system are disclosed for scattered beam correction in a CT examination of an object in a multi source CT. In at least one embodiment, the method includes generating original projection data records; reconstruction of the object with the original projection data records of at least one detector; determining the scattered radiation generated by each emitter exclusively in the direction of the original beams of the at least one other emitter relative to its opposing detector; generating corrected projection data records by removing the calculated scattered radiation from the original projection data records; reconstruction of the object with the corrected projection data records, and implementing a further iteration of the method when determining the scattered radiation or issuing the reconstruction result if at least one predetermined abort criterion applies.
摘要:
A method is disclosed for reconstructing image data of a moving examination object from measurement data, wherein the measurement data was captured in the course of a relative rotational movement between a radiation source of a computed tomography system and the examination object. In at least one embodiment of the method, a first image of the examination object is calculated from a complete measurement data record of the measurement data for an image reconstruction and a second image of the examination object is calculated from an incomplete measurement data record of the measurement data for an image reconstruction. Frequency splitting of the first and second images takes place respectively in at least one low-frequency and one higher-frequency component and the image data of the second image is supplemented in the low-frequency component with image data of the low-frequency component of the first image. In a further processing step the second image thus supplemented is improved using the first image, in that errors due to the incompleteness of the measurement data record of the second image are reduced.
摘要:
A method is disclosed for reconstructing image data of an examination subject from measured data, wherein the measured data was acquired in the course of a relative rotational movement between a radiation source of a computed tomography system and the examination subject. A limited area between the radiation source and a detector represents a field of view in respect of which measured data can be acquired, and parts of the examination subject were located at least temporarily outside the field of view in the course of the measured data acquisition. In at least one embodiment, first image data is reconstructed from the measured data, and a boundary of the examination subject is determined with the aid of the first image data. The first image data is subsequently modified using the determined boundary, and projection data is calculated from the modified first image data. The measured data is modified using the projection data, and finally second image data is reconstructed from the modified measured data.