Abstract:
Sulfur-substituted azetidinone hypocholesterolemic agents of the formula ##STR1## or a pharmaceutically acceptable salt thereof are disclosed, as well as pharmaceutical compositions containing them, and a method of lowering serum cholesterol by administering said compounds, alone or in combination with a cholesterol biosynthesis inhibitor.
Abstract:
Sulfur-substituted azetidinone hypocholesterolemic agents of the formula ##STR1## or a pharmaceutically acceptable salt thereof, wherein: Ar.sup.1 is aryl or R.sup.10 -substituted aryl;Ar.sup.2 is aryl or R.sup.4 -substituted aryl;Ar.sup.3 is aryl or R.sup.5 -substituted aryl;X and Y are --CH.sub.2 --, --CH(lower alkyl)-- or --C(dilower alkyl)--;R is --OR.sup.6, --O(CO)R.sup.6, --O(CO)OR.sup.9 or --O(CO)NR.sup.6 R.sup.7 ; R.sup.1 is hydrogen, lower alkyl or aryl; or R and R.sup.1 together are .dbd.O;q is 0 or 1; r is 0, 1 or 2; m and n are 0-5; provided that the sum of m, n and q is 1-5;R.sup.4 is selected from lower alkyl, --OR.sup.6, --O(CO)R.sup.6, --O(CO)OR.sup.9, --O(CH.sub.2).sub.1-5 OR.sup.6, --O(CO)NR.sup.6 R.sup.7, --NR.sup.6 R.sup.7, --NR.sup.6 (CO)R.sup.7, --NR.sup.6 (CO)OR.sup.9, --NR.sup.6 (CO)NR.sup.7 R.sup.8, --NR.sup.6 SO.sub.2 R.sup.9, --COOR.sup.6, --CONR.sup.6 R.sup.7, --COR.sup.6, --SO.sup.2 NR.sup.6 R.sup.7, S(O).sub.0-2 R.sup.9, --O(CH.sub.2).sub.1-10 --COOR.sup.6, --O(CH.sub.2).sub.1-10 CONR.sup.6 R.sup.7, --(lower alkylene)--COOR.sup.6 and --CH.dbd.CH--COOR.sup.6 ;R.sup.5 is selected from --OR.sup.6, --O(CO)R.sup.6, --O(CO)OR.sup.9, --O(CH.sub.2).sub.1-5 OR.sup.6, --O(CO)NR.sup.6 R.sup.7, --NR.sup.6 R.sup.7, --NR.sup.6 (CO)R.sup.7, --NR.sup.6 (CO)OR.sup.9, --NR.sup.6 (CO)NR.sup.7 R.sup.8, --NR.sup.6 SO.sub.2 R.sup.9, --COOR.sup.6, --CONR.sup.6 R.sup.7, --COR.sup.6, --SO.sub.2 NR.sup.6 R.sup.7, S(O).sub.0-2 R.sup.9, --O(CH.sub.2).sub.1-10 --COOR.sup.6, --O(CH.sub.2).sub.1-10 CONR.sup.6 R.sup.7, --CF.sub.3, --CN, --NO.sub.2, halogen, --(lower alkylene)COOR.sup.6 and --CH.dbd.CH--COOR.sup.6 ;R.sup.6, R.sup.7 and R.sup.8 are H, lower alkyl, aryl or aryl-substituted lower alkyl;R.sup.9 is lower alkyl, aryl or aryl-substituted lower alkyl; andR.sup.10 is selected from lower alkyl, --OR.sup.6, --O(CO)R.sup.6, --O(CO)OR.sup.9, --O(CH.sub.2).sub.1-5 OR.sup.6, --O(CO)NR.sup.6 R.sup.7, --NR.sup.6 R.sup.7, --NR.sup.6 (CO)R.sup.7, --NR.sup.6 (CO)OR.sup.9, --NR.sup.6 (CO)NR.sup.7 R.sup.8, --NR.sup.6 SO.sub.2 R.sup.9, --COOR.sup.6, --CONR.sup.6 R.sup.7, --COR.sup.6, --SO.sub.2 NR.sup.6 R.sup.7, S(O).sub.0-2 R.sup.9, --O(CH.sub.2).sub.1-10 --COOR.sup.6, --O(CH.sub.2).sub.1-10 CONR.sup.6 R.sup.7, --CF.sub.3, --CN, --NO.sub.2 and halogen;are disclosed, as well as pharmaceutical compositions containing them, and a method of lowering serum cholesterol by administering said compounds, alone or in combination with a cholesterol biosynthesis inhibitor.
Abstract:
The present invention relates to compounds, compositions, and methods for treatment of conditions related to mitochondrial function. In various aspects, the present invention comprises administering one or more epicatechin derivatives in an amount effective to stimulate mitochondrial function in cells. The compounds, compositions, and methods described herein provide for reducing infarct size in the heart following permanent ischemia or ischemia/reperfusion event or method for delaying, attenuating or preventing adverse cardiac remodeling, and can assist in prevention of impaired mitochondria biogenesis and thus prevention of the consequences of impaired mitochondrial biogenesis in various diseases and conditions, as well as provide for the active therapy of mitochondrial depletion that may have already occurred.
Abstract:
The present invention relates to compounds, compositions, and methods for treatment of conditions related to mitochondrial function. In various aspects, the present invention comprises administering one or more epicatechin derivatives in an amount effective to stimulate mitochondrial function in cells. The compounds, compositions, and methods described herein provide for reducing infarct size in the heart following permanent ischemia or ischemia/reperfusion event or method for delaying, attenuating or preventing adverse cardiac remodeling, and can assist in prevention of impaired mitochondria biogenesis and thus prevention of the consequences of impaired mitochondrial biogenesis in various diseases and conditions, as well as provide for the active therapy of mitochondrial depletion that may have already occurred.
Abstract:
The present invention provides synthetic processes for preparing racemic and/or optically pure epicatechin, epigallocatechin and related polyphenols as such or as their variously functionalized derivatives. A principle objective of the disclosure is to provide a new and useful method of synthesis to obtain polyphenols in isomerically pure and/or racemic forms.
Abstract:
The invention is directed to methods to inhibit p38-α kinase using compounds comprising saturated heterocycles coupled to a fused ring system.
Abstract:
The present invention is directed to a method for producing a pyridopyrimidone of the formula wherein X is N or CH and R is an aryl, heteroaryl or alkyl group, said method comprising the step of reacting an acid derivative of the formula: wherein X is N or CH; Y is an appropriate leaving group; Z is a halogen, OR1, NHR1, or SR1; and R1 is a lower alkyl; and the amidine derivative is wherein R is an aryl, heteroaryl or alkyl group.
Abstract:
The present invention is directed to a process for making 2-substituted pyridopyrimidones. In particular, 2-substituted pyridopyrimidones are made through the single step reaction of suitable acid derivatives with desired derivatives of amidines.
Abstract:
Quinazoline derivatives have the formula: or the pharmaceutically acceptable salts thereof; wherein each of Z5, Z6, Z7 and Z8 is N or CH and wherein one or two Z5, Z6, Z7 and Z8 are N and wherein two adjacent Z positions cannot be N; wherein m and n are each independently 0-3; wherein R1 is independently OH, SH, NH2, OR, SR, NHR, halo or R-halide; wherein two adjacent R1 groups may be joined to form an aliphatic hetero cycle ring of 5-6 members; wherein R2 is independently R, halo, R-halide, OR-halide, NH2, CONH2 or CONHR; wherein R is optionally substituted C1-C12 alkyl, C1-C12 alkenyl, C1-C12 alkynyl, or aryl C1-C12 alkyl, containing 0-4 heteroatoms in place of a carbon in the carbon backbone, where the optional substituents are ═O, ═N, or OH; and wherein R3 is H or CH3. Such compounds are useful in pharmaceutical compositions and methods of treating conditions characterized by enhanced TGFβ activity.
Abstract:
Improved reagents and methods of amination are provided. The reagents are phenyl hydroxylamines containing one nitro and at least one CF3 substituent on the phenyl moiety.