Abstract:
A gas turbine engine blade includes a blade portion having a leading edge and a trailing edge. A first surface connects the leading edge to the trailing edge and a second surface connects the leading edge to the trailing edge. A tip section is located at a first end of the blade portion and includes a pocket protruding into the tip section from an outermost end of the tip section. The pocket has a first side wall adjacent the first surface and a second side wall adjacent the second surface. At least one of the first side wall and the second side wall have a curve distinct from a curve of the corresponding adjacent surface.
Abstract:
A gas turbine engine component having a cooling hole includes a first wall having a cooling hole inlet, a second wall generally opposite the first wall and having a cooling hole outlet, a metering section extending downstream from the inlet and having a hydraulic diameter (dh), and a diffusing section extending from the metering section to the outlet. The metering section includes a substantially convex first surface extending from a first end to a second end, a substantially concave second surface extending from a third end to a fourth end, and first and second curved portions connecting the ends of the first and second surfaces.
Abstract:
An airfoil according to an exemplary aspect of the present disclosure includes, among other things, an airfoil section having an external wall and an internal wall. The internal wall defines a first reference plane extending in a spanwise direction and through a thickness of the internal wall. A first cavity and a second cavity are separated by the internal wall. A plurality of crossover passages within the internal wall connects the first cavity to the second cavity. The plurality of crossover passages are arranged such that the passage axis of each of the plurality of cooling passages intersects a surface of the second cavity.
Abstract:
An airfoil having one-sided pedestals is disclosed. The airfoil may define various cavities, such as an inflow feed cavity, an impingement cavity, and an outflow cavity. The various cavities may be connected by crossover sections such as an inflow crossover section and an outflow crossover section. Cooling air may be conducted into the inflow feed cavity, out of the inflow feed cavity through an inflow crossover section into an impingement cavity, and through an impingement cavity. The cooling air may be conducted out of the impingement cavity and into an outflow cavity through an outflow crossover section. Various cavities may include one-wall pedestals. One-wall pedestals may be structures extending from a wall of a cavity into the void of the cavity, whereupon cooling air may impinge, effectuating convective cooling.
Abstract:
A component for a turbine engine includes a fore edge connected to an aft edge via a first surface and a second surface. Multiple cooling passages are defined within the turbine engine component. A skin core passage is defined immediately adjacent the first surface, and at least one pedestal interrupts a flow path through the skin core passage.
Abstract:
Turbomachinery hardware, used in a rotor assembly and a stator assembly, including an airfoil portion including a leading edge, a trailing edge, a pressure side, and a suction side, and a platform on which the airfoil portion is disposed. The platform including a platform axis, a pressure side mateface located adjacent to the pressure side of the airfoil portion and a suction side mateface located adjacent to the suction side airfoil portion, wherein a portion of a pressure side mateface includes a first geometry, and a portion of a suction side mateface includes a second geometry. The first geometry is selected from a group consisting of: oblique to a platform axis, and a first curved portion. The second geometry is selected from a group consisting of: oblique to the platform axis and a second curved portion.
Abstract:
An airfoil comprises pressure and suction surfaces extending from a root section to a tip section of the airfoil. The airfoil also comprises a leading edge and trailing edge defining a chord length therebetween. A tip shelf is formed along the tip section between the pressure surface and a tip shelf wall, the tip shelf wall being spaced between the pressure surface and the suction surface. A squealer pocket is formed along the tip section between the tip shelf wall and a squealer tip wall extending from the suction surface. The tip shelf extends from within 10% of the cord length measured from the leading edge to within 10% of the chord length measured from the trailing edge. The squealer pocket extends from within 10% of the chord length measured from the leading edge to terminate less than 85% of the chord length measured from the trailing edge.
Abstract:
A combustor panel may comprise a dilution hole, a plurality of film cooling holes each of the plurality comprising an inlet and an outlet, a first group of the plurality of film cooling holes arranged circumferentially about the dilution hole, wherein each of film cooling holes of the first group have a first outlet angle oriented radially toward the center of the dilution hole, and a second group of the plurality of film cooling holes arranged radially outward of the first group and relatively circumferentially between the first group.
Abstract:
A vane according to an exemplary aspect of the present disclosure includes, among other things, a platform extending from an edge face and between spaced apart lateral faces and an airfoil extending outwardly from the platform. The platform includes at least one ejection port in the edge face and at least one passage connected to the at least one ejection port. A method of cooling a component is also disclosed.
Abstract:
A component for a gas turbine engine, the component having: a cooling slot located on a surface of the component, the cooling slot being defined by a plurality of diffuser portions each extending from a respective one of a plurality of cooling openings providing cooling fluid to the cooling slot.