Abstract:
Method, system and computer program product for providing real time detection of analyte sensor sensitivity decline is continuous glucose monitoring systems are provided.
Abstract:
Equivalent insulin pump retrospective virtual basal rates for daily injections are constructed from planned insulin injections according to a virtual basal rate profile developed for a patient, and a database of historical insulin injections, i.e. basal injections actually administered by the patient, providing a unified framework for analysis, design, optimization, and adaptation of MDI (multiple daily injections) and CSII (continuous subcutaneous insulin infusion (i.e. insulin pump)) treatment parameters for patients with diabetes.
Abstract:
A system, method and non-transient computer readable medium for predicting hypoglycemic risk in patients with diabetes following moderate exercise. A system may include a digital processor; and an exercise module configured to generate a hypoglycemia risk signal with a hypoglycemia prediction algorithm and to determine a hypoglycemia risk state with a classifier algorithm that classifies the hypoglycemia risk signal to identify an actionable hypoglycemia risk state based on a predefined threshold.
Abstract:
Time-varying hyperglycemic stresses are derived from actual ICU patients and applied to non-critically ill virtual patients, using any model of normal glucose-insulin physiology that fulfills certain requirements, in order to model and simulate stress hyperglycemia. Other aspects provide: 1) a methodology to perform sensitivity analyses of the parameters of ICU insulin infusion therapy protocols and to improve the protocols; and 2) a training system for clinicians about the course and management of stress hyperglycemia in the ICU or other facility.
Abstract:
A simulator for in-silico testing of Type 1 diabetes patients uses a model that puts in relation plasma concentrations, i.e., glucose G and insulin /, with glucose fluxes, i.e. endogenous glucose production (EGP), glucose rate of appearance (Ra), glucose utilization by the tissues (U), renal extraction (E), and insulin fluxes, i.e., rate of insulin appearance from the subcutaneous tissues (SC) and insulin degradation (D). A module is also included to describe counter-regulation, i.e. glucagon kinetics, secretion and action. A glucagon subcutaneous absorption model enables simulation of dual hormone control.
Abstract:
A system, method and non-transient computer readable medium for predicting hypoglycemic risk in patients with diabetes following moderate exercise. A system may include a digital processor; and an exercise module configured to generate a hypoglycemia risk signal with a hypoglycemia prediction algorithm and to determine a hypoglycemia risk state with a classifier algorithm that classifies the hypoglycemia risk signal to identify an actionable hypoglycemia risk state based on a predefined threshold.
Abstract:
A simulator for in-silico testing of Type 1 diabetes patients uses a model that puts in relation plasma concentrations, i.e., glucose G and insulin /, with glucose fluxes, i.e. endogenous glucose production (EGP), glucose rate of appearance (Ra), glucose utilization by the tissues (U), renal extraction (E), and insulin fluxes, i.e., rate of insulin appearance from the subcutaneous tissues (SC) and insulin degradation (D). A module is also included to describe counter-regulation, i.e. glucagon kinetics, secretion and action. A glucagon subcutaneous absorption model enables simulation of dual hormone control.
Abstract:
An aspect of an embodiment or partial embodiment of the present invention (or combinations of various embodiments in whole or in part of the present invention) comprises, but not limited thereto, a method and system (and related computer program product) for continually assessing the risk of hypoglycemia for a patient and then determining what action to take based on that risk assessment. A further embodiment results in two outputs: (1) an attenuation factor to be applied to the insulin rate command sent to the pump (either via conventional therapy or via open or closed loop control) and/or (2) a red/yellow/green light hypoglycemia alarm providing to the patient an indication of the risk of hypoglycemia. The two outputs of the CPHS can be used in combination or individually.