Abstract:
Equivalent insulin pump retrospective virtual basal rates for daily injections are constructed from planned insulin injections according to a virtual basal rate profile developed for a patient, and a database of historical insulin injections, i.e. basal injections actually administered by the patient, providing a unified framework for analysis, design, optimization, and adaptation of MDI (multiple daily injections) and CSII (continuous subcutaneous insulin infusion (i.e. insulin pump)) treatment parameters for patients with diabetes.
Abstract:
Method, system and computer program product for providing real time detection of analyte sensor sensitivity decline is continuous glucose monitoring systems are provided.
Abstract:
A system for generating a hypoglycemia risk signal associated with exercise-induced Hypoglycemia. The system can include a processor configured to obtain a blood glucose signal (BGstart), a ratio of absolute insulin on board over total daily insulin signal (IOBabs/TDI), and an initial glycemic slope signal (S0); generate a hypoglycemia risk signal based on a hypoglycemia prediction algorithm that determines the probability of a user being hypoglycemic during or after exercise based on the obtained BGstarts, IOBabs/TDI and S0.
Abstract:
A flexible system for utilizing data from different monitoring techniques and capable of providing assistance to patients with diabetes at several scalable levels, ranging from advice about long-term trends and prognosis to real-time automated closed-loop control (artificial pancreas). These scalable monitoring and treatment strategies are delivered by a unified system called the Diabetes Assistant (DiAs) platform. The system provides a foundation for implementation of various monitoring, advisory, and automated diabetes treatment algorithms or methods. The DiAs recommendations are tailored to the specifics of an individual patient, and to the patient risk assessment at any given moment.
Abstract:
A technique for treating diabetes that recognizes patient insulin sensitivity is a time-varying physiological parameter. The described techniques for treating diabetes include measuring interstitial fluid glucose concentration, reading insulin delivery data, determining patient insulin sensitivity based on the interstitial fluid glucose concentration and insulin delivery data, and a time-varying physiological parameter, and dispensing an insulin dose from an insulin delivery device based on the determined patient insulin sensitivity.
Abstract:
A method, system and computer program product for evaluating or determining a user's insulin sensitivity (SI). An initial step or module may include acquiring SMBG readings from a predetermined period. Another step or module may include computing an estimate of insulin sensitivity (SI) from the SMBG readings. Another step or module may include using the estimate of SI to compute individualized carbohydrate ratio. Additionally, another step or module may include using the estimate of SI to compute individualized correction factor. The computation of the two components of an insulin dose calculator, carbohydrate ratio and correction factor, uses this estimate, which allows the tailoring of carbohydrate ratio and correction factor to the present state of the person.
Abstract:
A computer-implemented method for providing a real-time estimate of glycosylated hemoglobin (HbAlc) of a patient from a self-monitoring blood glucose (SMBG) measurement, and tracking changes in average glycemia of said patient over time is disclosed. The method includes the steps of; a computer computing a surrogate fasting measurement based on SMBG data received from the patient; a computer computing a glycation value using the said surrogate fasting measurement in a predetermined glycation equation; a computer outputting said glycation value as an initial estimate of HbAlc upon initialization of tracking of said patient's average glycemia; a computer updating said glycation value by using an updated SMBG value in said predetermined glycation equation, said updated SMBG value being based on a subsequent computed surrogate fasting measurement; and a computer computing an updated estimate of HbAlc using said initial estimate of HbAlc and said updated glycation value in a predetermined HbAlc estimation equation.
Abstract:
A technique for treating diabetes that recognizes patient insulin sensitivity is a time-varying physiological parameter. The described techniques for treating diabetes include measuring interstitial fluid glucose concentration, reading insulin delivery data, determining patient insulin sensitivity based on the interstitial fluid glucose concentration and insulin delivery data, and a time-varying physiological parameter, and dispensing an insulin dose from an insulin delivery device based on the determined patient insulin sensitivity.
Abstract:
Time-varying hyperglycemic stresses are derived from actual ICU patients and applied to non-critically ill virtual patients, using any model of normal glucose-insulin physiology that fulfills certain requirements, in order to model and simulate stress hyperglycemia. Other aspects provide: 1) a methodology to perform sensitivity analyses of the parameters of ICU insulin infusion therapy protocols and to improve the protocols; and 2) a training system for clinicians about the course and management of stress hyperglycemia in the ICU or other facility.
Abstract:
A method and system use mathematical models and available patient information to virtualize a continuous glucose monitoring trace for a period of time. Such a method and system can generate the virtualized trace when episodic patient data is incomplete. Such a method and system can also rely on self-monitored blood glucose measurement information to improve the virtualized continuous glucose monitoring trace.