Abstract:
A micro-electro-mechanical system (MEMS) device includes a mirror having a top surface with trenches, a beam connected to the mirror, rotational comb teeth connected to the beam, and one or more springs connecting the beam to a bonding pad. The mirror can have a bottom surface for reflecting light. Stationary comb teeth can be interdigitated with the rotational comb teeth either in-plane or out-of-plane. Steady or oscillating voltage difference between the rotational and the stationary comb teeth can be used to oscillate or tune the mirror. The comb teeth can have a tapered shape.
Abstract:
A micro-electro-mechanical system (MEMS) mirror device includes an mirror, bonding pads, springs, and beams connected to the mirror. The mirror has a width greater than 1000 and less than 1200 microns, a length greater than 4000 and less than 5500 microns, and a thickness greater than 240 microns. Each beam includes a plurality of rotational comb teeth and is connected by multiple springs to the bonding pads.
Abstract:
A touch panel system includes micro-electro-mechanical system (MEMS) groups. Each group includes an emitter producing a beam, and a MEMS mirror located about a corner of a touch panel screen. The MEMS mirror reflects the beam to create a beam sweep across a touch panel surface. An array of photo sensors is located parallel to an edge of the touch panel screen to detect reflected beams from an object about the touch panel surface. Based on when the reflected beams are detected, the angular positions of the MEMS mirrors can be determined and correlated to the object's position.
Abstract:
A sensor includes at least one stationary pad with comb teeth, a hub, at least one actuator spoke coupled to a location on the hub, and at least one sensing spoke extending from the hub. The sensing spokes have comb teeth generally interdigitated with the comb teeth of the stationary pad. The location of the coupling between the actuator spoke and the hub offsets a line of action of a force on the actuator spoke from a center of rotation of the hub.
Abstract:
A micro-electro-mechanical system (MEMS) mirror system has an actuator that imparts a motion with a first periodic movement of high frequency superimposed a second periodic movement of low frequency to a frame and a mirror coupled to the frame so that the mirror rotates about two axes. The mirror is coupled by springs to the frame so the mirror is rotatable about a first axis. The frame has pivots each coupled by springs to actuators so the frame is rotatable about a second axis. The mirror has a first resonant frequency and the frame including the mirror has a second resonant frequency. The low frequency of the second periodic movement is equal to one of the first and the second resonant frequencies, and the high frequency of the first periodic movement is equal to the other one of the first and the second resonant frequencies.
Abstract:
A micro-electro-mechanical system (MEMS) mirror device includes a mirror coupled to an actuator by a first torsional hinge along a rotational axis. The actuator has a body and a group of coils extending from the body. An anchor is coupled another end of the actuator by a second torsional hinge along the rotational axis.
Abstract:
A micro-electro-mechanical system (MEMS) device includes a mirror having a top surface with trenches, a beam connected to the mirror, rotational comb teeth connected to the beam, and one or more springs connecting the beam to a bonding pad. The mirror can have a bottom surface for reflecting light. Stationary comb teeth can be interdigitated with the rotational comb teeth either in-plane or out-of-plane. Steady or oscillating voltage difference between the rotational and the stationary comb teeth can be used to oscillate or tune the mirror. The comb teeth can have a tapered shape.
Abstract:
A mirror device includes a mirror, an anchor, and a spring coupling the mirror to the anchor. The anchor and/or mirror can define one or more rows of holes adjacent to the coupling location of the spring. The natural frequency of the device can be adjusted by removing material between the perimeter of the mirror/anchor and the outermost holes, and between adjacent holes in the same row.Another mirror device includes a mirror, anchors, and springs coupling the mirror to the anchors. The natural frequency of the device can be adjusted by decoupling one or more springs coupling the mirror to the anchors.The mirror of both devices can includes one or more sacrificial portions. The natural frequencies of the both devices can also be adjusted by trimming the sacrificial portions.
Abstract:
A disk drive includes a storage disk, a data transducer, an actuator assembly and a positioner. The actuator assembly supports the data transducer over the storage disk. The actuator assembly includes a rotatable actuator hub and a longitudinal axis. The positioner moves the actuator assembly to position the data transducer relative to the storage disk. During movement of the actuator assembly, the actuator hub is subject to a resultant force that causes track misregistration of the data transducer. The positioner includes a magnet assembly that generates a magnetic field, a first conductor region and a second conductor region. In one embodiment, the conductor regions cooperate with the magnet assembly to generate a first force and a second force that are each directed at an angle having an absolute value that is greater than zero degrees and less than approximately 45 degrees relative to the longitudinal axis of the actuator assembly. In another embodiment, the conductor regions are each positioned at an angle having an absolute value of greater than approximately 45 degrees and less than 90 degrees relative to the longitudinal axis of the actuator assembly.
Abstract:
A micro-electro-mechanical system (MEMS) mirror device includes a mirror coupled to an actuator by a first torsional hinge along a rotational axis. The actuator has a body and a group of rotational teeth extending from the body. An anchor is coupled another end of the actuator by a second torsional hinge along the rotational axis.