摘要:
Provided is a sequence allocation method capable of reducing inter-cell interference of a reference signal when a ZC sequence is used as the reference signal in a mobile communication system. In the sequence allocation method divides R×M sequences specified by a ZC sequence number r (r=1 to R) and a cyclic shift sequence number m (m=1 to M) into a plurality of sequence groups X (X=1 to R) in accordance with the transmission band width of the reference signal, so that the ZC sequence is allocated to each cell in each sequence group unit. When it is assumed that R=9 and M=6, the number of sequence is 54. Each of the sequence groups is formed by two sequences. Accordingly, the number of sequence groups is 27. The 27 types of sequence groups are allocated to each cell.
摘要:
Provided is a sequence allocation method capable of reducing inter-cell interference of a reference signal when a ZC sequence is used as the reference signal in a mobile communication system. In the sequence allocation method divides R×M sequences specified by a ZC sequence number r (r=1 to R) and a cyclic shift sequence number m (m=1 to M) into a plurality of sequence groups X (X=1 to R) in accordance with the transmission band width of the reference signal, so that the ZC sequence is allocated to each cell in each sequence group unit. When it is assumed that R=9 and M=6, the number of sequence is 54. Each of the sequence groups is formed by two sequences. Accordingly, the number of sequence groups is 27. The 27 types of sequence groups are allocated to each cell.
摘要:
Provided is a sequence allocation method capable of reducing inter-cell interference of a reference signal when a ZC sequence is used as the reference signal in a mobile communication system. In the sequence allocation method divides R×M sequences specified by a ZC sequence number r (r=1 to R) and a cyclic shift sequence number m (m=1 to M) into a plurality of sequence groups X (X=1 to R) in accordance with the transmission band width of the reference signal, so that the ZC sequence is allocated to each cell in each sequence group unit. When it is assumed that R=9 and M=6, the number of sequence is 54. Each of the sequence groups is formed by two sequences. Accordingly, the number of sequence groups is 27. The 27 types of sequence groups are allocated to each cell.
摘要:
Provided is a sequence allocation method capable of reducing inter-cell interference of a reference signal when a ZC sequence is used as the reference signal in a mobile communication system. In the sequence allocation method divides R×M sequences specified by a ZC sequence number r (r=1 to R) and a cyclic shift sequence number m (m=1 to M) into a plurality of sequence groups X (X=1 to R) in accordance with the transmission band width of the reference signal, so that the ZC sequence is allocated to each cell in each sequence group unit. When it is assumed that R=9 and M=6, the number of sequence is 54. Each of the sequence groups is formed by two sequences. Accordingly, the number of sequence groups is 27. The 27 types of sequence groups are allocated to each cell.
摘要:
Provided is a sequence allocation method capable of reducing inter-cell interference of a reference signal when a ZC sequence is used as the reference signal in a mobile communication system. In the sequence allocation method divides R×M sequences specified by a ZC sequence number r(r=1 to R) and a cyclic shift sequence number m (m=1 to M) into a plurality of sequence groups X (X=1 to R) in accordance with the transmission band width of the reference signal, so that the ZC sequence is allocated to each cell in each sequence group unit. When it is assumed that R=9 and M=6, the number of sequence is 54. Each of the sequence groups is formed by two sequences. Accordingly, the number of sequence groups is 27. The 27 types of sequence groups are allocated to each cell.
摘要:
Provided is a sequence allocation method capable of reducing inter-cell interference of a reference signal when a ZC sequence is used as the reference signal in a mobile communication system. In the sequence allocation method divides R×M sequences specified by a ZC sequence number r (r=1 to R) and a cyclic shift sequence number m (m=1 to M) into a plurality of sequence groups X (X=1 to R) in accordance with the transmission band width of the reference signal, so that the ZC sequence is allocated to each cell in each sequence group unit. When it is assumed that R=9 and M=6, the number of sequence is 54. Each of the sequence groups is formed by two sequences. Accordingly, the number of sequence groups is 27. The 27 types of sequence groups are allocated to each cell.
摘要:
Provided is a sequence allocation method capable of reducing inter-cell interference of a reference signal when a ZC sequence is used as the reference signal in a mobile communication system. In the sequence allocation method divides R×M sequences specified by a ZC sequence number r(r=1 to R) and a cyclic shift sequence number m (m=1 to M) into a plurality of sequence groups X (X=1 to R) in accordance with the transmission band width of the reference signal, so that the ZC sequence is allocated to each cell in each sequence group unit. When it is assumed that R=9 and M=6, the number of sequence is 54. Each of the sequence groups is formed by two sequences. Accordingly, the number of sequence groups is 27. The 27 types of sequence groups are allocated to each cell.
摘要:
In DFT-s-OFDM, disclosed are a wireless transmission apparatus and wireless transmission method whereby freedom of allocation of frequencies is secured, while increases of CM are avoided. An SD number determination unit (152) determines an SD number based on the channel quality information of a mobile station and a threshold value that is set by a threshold value setting unit (151). A transmission bandwidth determination unit (153) determines the transmission bandwidth necessary for transmission of the transmission data. An allocation commencement position determination unit (154) determines the position for commencement of allocation of transmission data. If the SD number is equal to or more than the threshold value, a divided bandwidth determination unit (155) sets all the divided bandwidths to equal values and a frequency interval determination unit (156) sets all the frequency intervals to equal values.
摘要:
In DFT-s-OFDM, disclosed are a wireless transmission apparatus and wireless transmission method whereby freedom of allocation of frequencies is secured, while increases of CM are avoided. An SD number determination unit (152) determines an SD number based on the channel quality information of a mobile station and a threshold value that is set by a threshold value setting unit (151). A transmission bandwidth determination unit (153) determines the transmission bandwidth necessary for transmission of the transmission data. An allocation commencement position determination unit (154) determines the position for commencement of allocation of transmission data. If the SD number is equal to or more than the threshold value, a divided bandwidth determination unit (155) sets all the divided bandwidths to equal values and a frequency interval determination unit (156) sets all the frequency intervals to equal values.
摘要:
Disclosed is a wireless communication apparatus and wireless communication method wherein flexible frequency scheduling is performed without increasing the scale of the DFT (Discrete Fourier Transform) circuitry. For example, when resource allocation information is reported indicating whether or not a resource has been allocated to each of a plurality of RBGs (RB groups) into which the system bandwidth is divided, as in Type 0 allocation, if the number of reported RBs reported by the resource allocation information cannot be expressed as “2^n×3^m×5^l”, an allocated RB number setting section (208) sets the number of allocated resource blocks used in the actual transmission band, corresponding to the reported RB number, to the number of resource blocks that can be represented by any of “2^n×3^m×5^l”, and an allocated RB selection section (209); selects the allocated RB employed in the actual transmission band from the resource allocation information and allocated RB number.