Abstract:
The invention discloses an apparatus for generating a Viterbi-processed data using an input signal obtained from an optical disk, including a Viterbi module and a binary signal enhancing module. The Viterbi module is configured to process the input signal according to a binary signal. The binary signal enhancing module is configured to boost the input signal and generate the binary signal accordingly.
Abstract:
An apparatus and method for demodulating an input signal modulated from a reference signal and a data signal are disclosed. The apparatus includes a determining unit, a first calculating unit, and a comparing unit. The determining unit is utilized for determining a plurality of first calculating timings of changing different calculating modes according to the input signal. The first calculating unit is coupled to the determining unit and utilized for generating a first calculating result of the input signal according to the first calculating timings and the calculating modes thereof. The comparing unit is coupled to the first calculating unit and utilized for generating a comparing result according to the first calculating result of the input signal and a threshold setting, and for outputting a demodulated data of the input signal according to the comparing result.
Abstract:
A device for controlling access to an optical disc includes a control word calculator and a numerically controlled oscillator (NCO). The control word calculator is arranged to calculate a control word corresponding to a radius where the optical disc is accessed. In addition, the NCO is arranged to generate an output frequency according to the control word, wherein the output frequency is utilized for accessing the optical disc. An associated method for controlling access to an optical disc includes: calculating a control word corresponding to a radius where the optical disc is accessed; and generating an output frequency according to the control word, wherein the output frequency is utilized for accessing the optical disc.
Abstract:
The invention discloses an error-correcting apparatus for decoding an input signal by using a Viterbi algorithm to generate a Viterbi-decoded signal, including an erasure unit and a decoder. The erasure unit is configured to generate at least one logic signal according to at least one path metric difference of path metrics in the Viterbi algorithm, and generate erasure information, wherein the erasure information indicates data reliability of at least one location of the Viterbi-decoded signal. The decoder is configured to decode the Viterbi-decoded signal according to the erasure information.
Abstract:
A positioning method and a positioning system based on light intensity are provided. The positioning system comprises a lighting system, a sense feedback device and a positioning module. The lighting system comprises at least three point light sources and sequentially adjusts luminance of these point light sources to light up a target. The sense feedback device is disposed on the target and used to collect light intensity information of the light projected on the target by the lighting system. The positioning module calculates a distance between the target and each of the point light sources based on the light intensity information and calculates a positioning location of the target based on the locations of the point light sources and the distances between the target and the point light sources.
Abstract:
An apparatus and method for demodulating an input signal modulated from a reference signal and a data signal are disclosed. The apparatus includes a determining unit, a first calculating unit, and a comparing unit. The determining unit is utilized for determining a plurality of first calculating timings of changing different calculating modes according to the input signal. The first calculating unit is coupled to the determining unit and utilized for generating a first calculating result of the input signal according to the first calculating timings and the calculating modes thereof. The comparing unit is coupled to the first calculating unit and utilized for generating a comparing result according to the first calculating result of the input signal and a threshold setting, and for outputting a demodulated data of the input signal according to the comparing result.
Abstract:
The invention provides a servo calibration mark detection circuit for use in an optical disk drive. In one embodiment, the servo calibration mark detection circuit comprises a summing processor, a slicing level generator, and a comparator. The summing processor sums an intensity of a light beam reflected from both an inner groove and an outer groove to obtain a first signal. The slicing level generator generates a slicing level. The comparator then compares the first signal with the slicing level to obtain a second signal, wherein the second signal indicates a first location of a first servo calibration mark recorded on the inner groove and a second location of a second servo calibration mark recorded on the outer groove.
Abstract:
A control circuit and a control method of controlling a rotation frequency of a spindle in an optical disc drive, the control circuit comprising: a spindle controller, electrically coupled to the spindle, for driving the spindle to rotate an optical disc according to a rotation control signal; a detector, electrically coupled to the spindle controller, for detecting the rotation frequency and for generating detecting signals; a frequency-adjusting module, electrically coupled to the detector, for adjusting at least one of the detecting signals to reduce a rotation frequency difference between detecting signals; a signal selector, electrically coupled to the frequency-adjusting module, for receiving output signals generated from the frequency-adjusting module and then outputting the rotation control signal.
Abstract:
An apparatus of processing an input signal generated according to accessing of an optical storage medium is disclosed. The apparatus has a detecting circuit and a decision logic. The detecting circuit is coupled to the input signal for detecting a target peak value and a target bottom value of the input signal within a time period, wherein the time period is not less than a period of a reference signal generated according to accessing of the optical storage medium. The decision logic is coupled to the detecting circuit for determining a reference level according to the target peak value and the target bottom value.
Abstract:
The invention provides a servo calibration mark detection circuit for use in an optical disk drive. In one embodiment, the servo calibration mark detection circuit comprises a summing processor, a slicing level generator, and a comparator. The summing processor sums an intensity of a light beam reflected from both an inner groove and an outer groove to obtain a first signal. The slicing level generator generates a slicing level. The comparator then compares the first signal with the slicing level to obtain a second signal, wherein the second signal indicates a first location of a first servo calibration mark recorded on the inner groove and a second location of a second servo calibration mark recorded on the outer groove.