Abstract:
An apparatus may include a circuit configured to generate, by an analog to digital converter (ADC), one or more ADC samples based on an input signal. The circuit may be further configured to generate a first estimated signal using a first channel pulse response estimation with a gain constraint based on the one or more ADC samples and generate a second estimated signal using a second channel pulse response estimation with a phase constraint based on the one or more ADC samples.
Abstract:
A method for transmitting and/or receiving a potential aggressor audio signal includes a transmission and/or a reception of successive groups of data timed by a first clock signal within respective successive frames synchronized by a second clock signal. In the presence of a risk of interference of the potential aggressor audio signal with a different, potential victim, signal, during the transmission or reception of the potential aggressor audio signal, the frequency of the first clock signal is modified while keeping the frequency of the second clock signal unchanged.
Abstract:
According to one embodiment, there is provided a disk apparatus including a disk medium and a controller. The disk medium is able to store a signal with three levels in a track. The track includes a first subtrack and a second subtract. The second subtrack is adjacent to the first subtract. The controller performs a first operation based on a selected level among the three levels, a first bit written in the first subtract corresponding to the selected level, and a second bit written in the second subtrack corresponding to the selected level. The first operation is an operation to correct displacement between a write position of a third bit in the first subtrack and a write position of a fourth bit in the second subtrack in a circumferential direction of the disk medium.
Abstract:
The presently disclosed technology teaches integrating disc drive electronics into a transducer head. Decreased electrical transit times and data processing times can be achieved by placing the electronics on or within the transducer head because electrical connections may be made physically shorter than in conventional systems. The electronics may include one or more of a control system circuit, a write driver, and/or a data buffer. The control system circuit generates a modified clock signal that has a fixed relation to phase and frequency of a bit-detected reference signal that corresponds to positions of patterned bits on the disc. The write driver writes outgoing data bits received from an external connection to off-head electronics directly to the writer synchronized with the modified clock signal. The data buffer stores and converts digital data bits sent from the off-head electronics to an analog signal that is synchronized with the modified clock signal.
Abstract:
An adjusting method for a magnetic disk device including a disk, a head that writes data on the disk, a controller circuit that outputs write data and a control signal related to the write data, and an integrated circuit that outputs a write current to the head, includes adding a delay to a timing of polarity inversion of one bit of the write data or the control signal, outputting the write data and the control signal added with the delay from the controller circuit to the integrated circuit, outputting from the integrated circuit to the head, the write current having a current value that is changed at one of timings of polarity inversion of the write data, according to the control signal, and adjusting a deviation between the write data and the control signal, based on the output write current.
Abstract:
A system for compensating for heat induced transient phase shift in a heat assisted magnetic recording system. A heat assisted magnetic data recording system includes a near field thermal transducer that locally heats the media during writing. The thermal transducer, when activated, results in a change in size of a magnetic transition written to the magnetic media. This change in size of the thermal transition results in a transient phase shift of the data recorded on the magnetic media. The system includes circuitry for predetermining an anticipated amount of transient phase shift and adjusting a subsequent read signal to compensate for the known transient phase shift, thereby eliminating signal errors resulting from the transient phase shift.
Abstract:
Methods for determining a variable data frequency for recording data on a zone of a magnetic storage disc, each zone including a plurality of tracks and each track including a plurality of sectors, the method includes measuring a signal to noise ratio (S/N) around at least a first track in a first zone; and modulating a data frequency based on the measured S/N around the first track.
Abstract:
An apparatus includes: a media; a head over the media; a read channel, coupled to the head, configured to extract data from the media; control circuitry, coupled to the read channel, configured to execute a read command; and wherein the read channel is further configured to: generate, based on extracting the data from the media, a data condition indicator, and provide, for use by the control circuitry, the data and the data condition indicator.
Abstract:
According to embodiments of the present invention, a method for providing a synchronization signal for at least one of a read operation or a write operation carried out by means of a head in a data storage device is provided. The method includes obtaining a readback servo signal from a storage medium of the data storage device by means of the head, the readback servo signal having at least one frequency associated with a servo track of the storage medium, frequency mixing the readback servo signal with a local signal having a local frequency to provide a frequency mixed signal, and filtering the frequency mixed signal to provide the synchronization signal for at least one of the read operation or the write operation. According to further embodiments of the present invention, a data storage device is also provided.
Abstract:
An apparatus for reading data includes an array of analog inputs operable to receive analog signals retrieved from a magnetic storage medium, wherein the analog inputs correspond to multiple data tracks on the magnetic storage medium, and wherein the number of analog inputs in the array of analog inputs is greater than the number of data tracks being read, at least one joint equalizer operable to filter the analog inputs to yield an equalized output for each of the data tracks being read, and at least one data detector operable to apply a detection algorithm to the equalized output from the joint equalizer to yield detected values for each of the data tracks being read.