Abstract:
The present invention discloses an isolated power converter circuit and a control method thereof. The isolated power converter circuit includes: a transformer circuit, a power switch circuit, an opto-coupler circuit, and a control circuit. The transformer circuit includes a first winding and a second winding. The power switch circuit is coupled to the transformer circuit to control it according to a driving signal. The opto-coupler circuit generates a feedback signal. The control circuit is coupled to the power switch circuit and the opto-coupler circuit, for generating the driving signal according to the feedback signal. The control circuit includes a distinguishing circuit for distinguishing a status of the feedback signal.
Abstract:
The present invention discloses a light emitting device driver circuit and a control circuit and a control method thereof. The light emitting device driver circuit converts an input voltage to an output voltage, and provides an output current to a light emitting device circuit. The present invention detects whether the output voltage exceeds a predetermined level, and if no, the regulation target of the output current is set to a relatively higher current to fast charge an output capacitor; if yes, the output current is regulated to a desired target, wherein the relatively higher current is higher than the desired target.
Abstract:
A control circuit of a switching regulator, which controls rectified power within a predetermined range, detects an input voltage and an input current to generate a voltage detection signal and a current detection signal respectively, and the voltage detection signal and the current detection signal are multiplied by one the other to generate a power index. The control circuit generates an error signal according to the power index and a reference signal. A low-pass-filter filters a high frequency band in the process. A control signal generation circuit of the control circuit generates a control signal according to the error signal. And a driver circuit of the control circuit generates an operation signal according to the control signal, for switching a power switch to convert the rectified power to an output voltage.
Abstract:
A speed control device, which is adapted to be used in connection with a derailleur type bicycle or an internal gear hub type bicycle, has one operation mode for up-shifting the speed and another operation mode for down-shifting the speed. The two operation modes can be affected by an operation lever, with the operation lever pivoted in a second rotation direction for the up-shifting operation and in a first rotation direction for the down-shifting operation.
Abstract:
The present invention discloses a circuit and a method for providing absolute information for floating grounded integrated circuit. The method includes: receiving an absolute information sense signal carrying absolute information; converting the absolute information sense signal to a current signal; and generating an internal reference signal according to the current signal, wherein the internal reference signal or a relationship between the internal reference signal and a floating ground level is related to the absolute information.
Abstract:
The present invention discloses a light emitting device circuit and a control method thereof. The light emitting device circuit includes: a light emitting device control circuit, for converting an input voltage to an output voltage according to a control signal, wherein the output voltage is supplied to a light emitting device circuit; a voltage supply circuit, which is coupled to the light emitting device circuit, for generating a supply voltage from the output voltage; and a remote control circuit, which is coupled to the voltage supply circuit, for receiving the supply voltage, and generating the control signal according to a remote signal.
Abstract:
The present invention discloses an isolated power converter circuit and a control method thereof. The isolated power converter circuit includes: a transformer circuit, a power switch circuit, an opto-coupler circuit, and a control circuit. The transformer circuit includes a first winding and a second winding. The power switch circuit is coupled to the transformer circuit to control it according to a driving signal. The opto-coupler circuit generates a feedback signal. The control circuit is coupled to the power switch circuit and the opto-coupler circuit, for generating the driving signal according to the feedback signal. The control circuit includes a distinguishing circuit for distinguishing a status of the feedback signal.
Abstract:
A method for deriving precise control over laser power of an optical pickup unit (OPU) includes: providing an analog-to-digital converter (ADC) within an automatic power calibration (APC) circuit to derive a path gain and/or a path offset from the APC circuit; and selectively performing compensation according to the gain and/or the path offset, in order to maintain precision of a relationship between the laser power and a target command utilized for controlling the laser power. An associated APC circuit comprising an ADC and at least one compensation module is further provided. The ADC is utilized for deriving a path gain and/or a path offset from the APC circuit. The compensation module is utilized for selectively performing compensation according to the path gain and/or the path offset, in order to control the laser power by a target command.
Abstract:
The present invention discloses a light emitting device power supply circuit, a light emitting device driver circuit and a control method thereof. The light emitting device driver circuit is coupled to a tri-electrode AC switch (TRIAC) dimmer circuit, and it controls the brightness of a light emitting device circuit according a rectified dimming signal. The light emitting device driver circuit includes a power stage circuit and a light emitting device control circuit. The light emitting device control circuit generates a switch control signal. The power stage circuit operates at least one power switch thereof according to the switch control signal to generate a latching current for firing the TRIAC dimmer circuit, and the latching current is inputted to the light emitting device circuit.
Abstract:
A trimmer circuit is so configured that an electronic device will break down to produce a high current to trim a fuse. The electronic device is selectively configured to have a breakdown voltage lower than an applied voltage, for the trigger of its breakdown to be controllable. In an embodiment, the electronic device is switched between two states having two breakdown voltages respectively, and the applied voltage is higher than one of the breakdown voltages and lower than the other one.