Abstract:
A wind turbine pitch drive system comprises an electric grid for supplying electrical power, a motor for driving a pitch actuator, an electronic converter for controlling the motor and a back-up energy storage unit for supplying electrical power. The electronic converter comprises a DC-link capacitor bank. The system furthermore comprises a switching device for selectively connecting the DC-capacitor bank link to the back-up energy storage unit, and a frequency generator for controlling the switching device. Also disclosed is a method for protecting a component of the electronic converter.
Abstract:
It comprises bushings in at least a first circumferential row in a blade portion and suitable for receiving studs in a hub portion. Bushings comprise an elongated body with lateral faces, lateral faces inclined to each other and major and minor faces into which the lateral faces converge. The connector assembly allows an efficient releasable connection of blade root and hub in a wind turbine rotor.
Abstract:
Method of operating a wind farm comprising a plurality of wind turbines, each of the turbines having a plurality of blades, the method comprising determining a possible wake situation at a first wind turbine caused by a second wind turbine, the second wind turbine being located upstream of the first wind turbine, and individually adapting the blades of the second wind turbine such that a wake generated by the second wind turbine is deflected away from the first wind turbine.
Abstract:
It comprises a first member with a plate attached and substantially covering at least one portion of a second member (20), both members being rotatable relative to each other and defining a tortuous way, and it further comprises a brush sealing attached to the first member and resting on a siding plate in the second member such that an inner gap formed between said first and second members is sealed. A flexible member may be provided between the brush sealing and the first member for joining them in a flexible way.
Abstract:
The present invention provides a method of operating a wind turbine having a rotor with a plurality of blades, a system for determining one or more loads on the wind turbine, a historical register of data on the wind turbine operation, and a control system for controlling one or more operational parameters of the wind turbine. The method comprises determining the loads on the wind turbine, and storing the determined loads on the wind turbine in the historical register. The method further comprises obtaining, from the historical register, a characteristic indicative of the loads on the wind turbine accumulated over time, and determining one or more wind thrust limits depending on the obtained characteristic indicative of the loads accumulated over time. One or more operational parameters of the wind turbine are controlled to keep the wind thrust on the wind turbine within the determined wind thrust limits.
Abstract:
Methods and arrangements for controlling the tension of tensioning cables in precompressed towers are disclosed. The towers may comprise a tower section (5), a pair of flanges (15, 15′), a plurality of tensioning cables (10A-10D) and at least one tensioner (30AB, 30CD). The pair of flanges may be arranged around an upper and a lower part of the tower section. The at least one tensioner may be arranged between two of the plurality of tensioning cables (10A-10D). The tensioner may pull the tensioning cables in response to a load signal to increase the tension.
Abstract:
Methods for determining a yaw angle and a pitch angle cycle for a wind turbine are disclosed. The methods comprise measuring during a measuring time a wind speed and a wind direction at a plurality of measuring heights between the maximum and minimum height at the wind site, determining an average wind speed and an average wind direction for each of the measuring heights during the measuring time, and determining a wind speed distribution and wind direction distribution between the maximum height and the minimum height, and determining one or more yaw-pitch combinations of yaw angle and pitch angle cycles as a function of an azimuth position of a rotor blade that lead to a desired angle of attack along the rotor swept area. The present disclosure further relates to methods of operating a wind turbine and suitable wind turbines.
Abstract:
When traversed by a flow of water, a hydraulic machine rotating part rotates around an axis of rotation. It includes runners which are distributed around the axis of rotation and each extend between a leading edge and a trailing edge. Each runner can include a first part which defines its leading edge and a second part which is attached to the first part and defines the trailing edge at least in part. The second part can be elastically deformable or displaceable in a reversible manner with respect to the first part, under the action of the flow of water, the second part defining, when the machine operates, the direction of the flow of water downstream of the runner.
Abstract:
A direct drive wind turbine has a a rotor and a generator. The rotor includes a hub and a plurality of blades rotatably mounted on a frame. The generator includes a generator rotor and a generator stator. There are one or more dampers arranged between the rotor and the generator rotor and extending at least partially in an axial direction.
Abstract:
The invention relates to a wheel (R) of the Francis type that comprises a ring (1) with revolution symmetry about the rotation axis (Z) of the wheel (R), and curved blades (21, 22) connected to the ring (1) and each having an outer peripheral edge (212, 222) and an inner central edge (211, 221). The connection points (B21, B22) between the ring (1) and the inner central edges (211, 221) of the blades (21, 22) are located on a same circle (C20) centered on the axis (Z). The connection points (A21, A22) between the ring (1) and the outer peripheral edges (212, 222) of the blades (21, 22) are located on at least two distinct circles (C21, C22) (D21, D22) centered on the axis (Z).