-
公开(公告)号:US20240061740A1
公开(公告)日:2024-02-22
申请号:US18359350
申请日:2023-07-26
Applicant: NEC Laboratories America, Inc.
Inventor: Zhengzhang Chen , Haifeng Chen , Liang Tong , Dongjie Wang
CPC classification number: G06F11/079 , G06F11/3447
Abstract: A computer-implemented method for locating root causes is provided. The method includes detecting a trigger point from entity metrics data and key performance indicator (KPI) data, generating a learned causal graph by fusing a state-invariant causal graph with a state-dependent causal graph, and locating the root causes by employing a random walk-based technique to estimate a probability score for each of the entity metrics data by starting from a KPI node.
-
公开(公告)号:US20240055842A1
公开(公告)日:2024-02-15
申请号:US18492902
申请日:2023-10-24
Applicant: NEC Laboratories America, Inc.
Inventor: Yangmin Ding , Yuanda Xu , Sarper Ozharar , Yue Tian , Ting Wang
CPC classification number: H02G1/02 , G01S19/01 , G01D5/35354
Abstract: Systems and methods for performing the dynamic anomaly localization of utility pole aerial/suspended/supported wires/cables by distributed fiber optic sensing. In sharp contrast to the prior art, our inventive systems and methods according to aspects of the present disclosure advantageously identify a “location region” on a utility pole supporting an affected wire/cable, thereby permitting the identification and reporting of service personnel that are uniquely responsible for responding to such anomalous condition(s).
-
公开(公告)号:US20240054373A1
公开(公告)日:2024-02-15
申请号:US18471570
申请日:2023-09-21
Applicant: NEC Laboratories America, Inc.
Inventor: Wenchao Yu , Wei Cheng , Haifeng Chen , Yuncong Chen , Xuchao Zhang , Tianxiang Zhao
Abstract: A method for learning a self-explainable imitator by discovering causal relationships between states and actions is presented. The method includes obtaining, via an acquisition component, demonstrations of a target task from experts for training a model to generate a learned policy, training the model, via a learning component, the learning component computing actions to be taken with respect to states, generating, via a dynamic causal discovery component, dynamic causal graphs for each environment state, encoding, via a causal encoding component, discovered causal relationships by updating state variable embeddings, and outputting, via an output component, the learned policy including trajectories similar to the demonstrations from the experts.
-
公开(公告)号:US20240046091A1
公开(公告)日:2024-02-08
申请号:US18484793
申请日:2023-10-11
Applicant: NEC Laboratories America, Inc.
Inventor: Wenchao Yu , Wei Cheng , Haifeng Chen , Yiwei Sun
Abstract: A method for acquiring skills through imitation learning by employing a meta imitation learning framework with structured skill discovery (MILD) is presented. The method includes learning behaviors or tasks, by an agent, from demonstrations: by learning to decompose the demonstrations into segments, via a segmentation component, the segments corresponding to skills that are transferrable across different tasks, learning relationships between the skills that are transferrable across the different tasks, employing, via a graph generator, a graph neural network for learning implicit structures of the skills from the demonstrations to define structured skills, and generating policies from the structured skills to allow the agent to acquire the structured skills for application to one or more target tasks.
-
45.
公开(公告)号:US20240037397A1
公开(公告)日:2024-02-01
申请号:US18479385
申请日:2023-10-02
Applicant: NEC Laboratories America, Inc.
Inventor: Jingchao Ni , Zhengzhang Chen , Wei Cheng , Bo Zong , Haifeng Chen
Abstract: A method interprets a convolutional sequence model. The method converts an input data sequence having input segments into output features. The method clusters the input segments into clusters using respective resolution-controllable class prototypes allocated to each of classes. Each respective class prototype includes a respective output feature subset characterizing a respective associated class. The method calculates, using the clusters, similarity scores that indicate a similarity of an output feature to a respective class prototypes responsive to distances between the output feature and the respective class prototypes. The method concatenates the similarity scores to obtain a similarity vector. The method performs a prediction and prediction support operation that provides a value of prediction and an interpretation for the value responsive to the input segments and similarity vector. The interpretation for the value of prediction is provided using only non-negative weights and lacking a weight bias in the fully connected layer.
-
46.
公开(公告)号:US20240028897A1
公开(公告)日:2024-01-25
申请号:US18479326
申请日:2023-10-02
Applicant: NEC Laboratories America, Inc.
Inventor: Jingchao Ni , Zhengzhang Chen , Wei Cheng , Bo Zong , Haifeng Chen
Abstract: A method interprets a convolutional sequence model. The method converts an input data sequence having input segments into output features. The method clusters the input segments into clusters using respective resolution-controllable class prototypes allocated to each of classes. Each respective class prototype includes a respective output feature subset characterizing a respective associated class. The method calculates, using the clusters, similarity scores that indicate a similarity of an output feature to a respective class prototypes responsive to distances between the output feature and the respective class prototypes. The method concatenates the similarity scores to obtain a similarity vector. The method performs a prediction and prediction support operation that provides a value of prediction and an interpretation for the value responsive to the input segments and similarity vector. The interpretation for the value of prediction is provided using only non-negative weights and lacking a weight bias in the fully connected layer.
-
公开(公告)号:US20240013920A1
公开(公告)日:2024-01-11
申请号:US18370074
申请日:2023-09-19
Applicant: NEC Laboratories America, Inc.
Inventor: Jingchao Ni , Wei Cheng , Haifeng Chen , Takayoshi Asakura
Abstract: Systems and methods for predicting an occurrence of a medical event for a patient using a trained neural network. Historical patient data is preprocessed to generate normalized training samples, and the normalized training samples are sent to a personalized deep convolutional neural network for model pretraining and updating of model parameters. The pretrained model is stored in a remote server for utilization by a local machine for personalization during a preparation time period for a medical treatment. A normalized finetuning set is generated as output, and the model parameters are iteratively finetuned. A personal prediction score for future medical events is generated, and an operation of a medical treatment device is controlled responsive to the prediction score.
-
公开(公告)号:US20240006069A1
公开(公告)日:2024-01-04
申请号:US18370049
申请日:2023-09-19
Applicant: NEC Laboratories America, Inc.
Inventor: Jingchao Ni , Wei Cheng , Haifeng Chen , Takayoshi Asakura
Abstract: Systems and methods for predicting an occurrence of a medical event for a patient using a trained neural network. Historical patient data is preprocessed to generate normalized training samples, and the normalized training samples are sent to a personalized deep convolutional neural network for model pretraining and updating of model parameters. The pretrained model is stored in a remote server for utilization by a local machine for personalization during a preparation time period for a medical treatment. A normalized finetuning set is generated as output, and the model parameters are iteratively finetuned. A personal prediction score for future medical events is generated, and an operation of a medical treatment device is controlled responsive to the prediction score.
-
49.
公开(公告)号:US20230375375A1
公开(公告)日:2023-11-23
申请号:US18319466
申请日:2023-05-17
Applicant: NEC Laboratories America, Inc.
Inventor: Yangmin DING , Yue TIAN , Sarper OZHARAR , Ting WANG
CPC classification number: G01D5/35358 , G06T7/70 , G06T7/13 , G01H9/004 , G01L1/242 , G06T2207/10024
Abstract: A radio-controlled, two-way acoustic modem for operating with a distributed fiber optic sensing (DFOS) system including circuitry that receives radio signals including configuration information, configures the modem to operate according to the configuration information, and generate acoustic signals that are detected by the DFOS system. The acoustic modem includes one or more sensors that detect environmental information that is encoded in the acoustic signals for further reception by the DFOS system. The received configuration information may change the operating times, sensors or other operating aspects of the modem as desired an such information may be transmitted from a fixed location or a mobile vehicle.
-
公开(公告)号:US20230361849A1
公开(公告)日:2023-11-09
申请号:US18311353
申请日:2023-05-03
Applicant: NEC Laboratories America, Inc.
Inventor: Mohammad Khojastepour , Nariman Torkzaban
IPC: H04B7/06 , H04B7/0426 , H04B7/0495
CPC classification number: H04B7/06958 , H04B7/0639 , H04B7/0447 , H04B7/0495
Abstract: Beamforming methods and systems include determining a tradeoff curve between scanning beamwidth and transmission beamwidth based on a channel distribution for a base station. A set of scanning beams is selected based on the tradeoff curve. Devices around the base station are scanned for using the set of scanning beams. A set of transmission beams is selected for communications with the devices based on information received during the scanning. The set of transmission beams are used for transmission with a beamforming transmitter.
-
-
-
-
-
-
-
-
-