Abstract:
A multi-component electro-mechanical flame spray deposition system is disclosed having a first electro-mechanical feeder and a second electro-mechanical feeder, each in communication with a mixing hopper, and wherein the mixing hopper is in communication with a powder nozzle having an orifice, and a combustion torch having an orifice, wherein the orifice of the powder nozzle is in juxtaposition to the orifice of the combustion torch. A method of using the multi-component electro-mechanical flame spray deposition system is provided for depositing substrates on or to articles of manufacture.
Abstract:
A powder injector assembly for delivering powder into an axial flow of heated gas of a powder coating applicator. The assembly includes a powder injector rotatable in a plane whose centerline is perpendicular to the gas flow for issuing powder thereto. An injection nozzle exit port is integral with and leads from the injector and is disposed in the centerline for angular rotation thereabout, and is alignable into the gas flow for powder melting and subsequent substrate deposition. An integral cooling system maintains the powder in a non-melted state until its exit. The injector is independently movable laterally, axially, and angularly for respective radial, axial, and angular movement of the injection nozzle exit port. Angular movement occurs along a centerline passing through the tip of the nozzle exit port to thereby permit independent angle adjustment without changing axial or lateral locations of the injection point.
Abstract:
The invention relates to a process for the coating of components, wherein a plastic-containing layer is sprayed onto the surface of the components. During spraying, at least one mixture component consisting of a material other than plastic is added directly to a plastic powder. The plastic powder and the mixture component are supplied separately and are separately adjustable.
Abstract:
A flame spray system comprising a torch is provided having a gas mixing chamber and means for feeding acetylene and oxygen to the mixing chamber in a preselected proportion. The system includes acetylene valve means with an orifice restrictor for feeding the gas to a mixing chamber, the orifice size being selected to provide, in the choked state, a flow of acetylene therethrough under a selected choke pressure. Oxygen valve means is also provided with an orifice restrictor of size selected to provide in the choked state a flow of oxygen therethrough under a selected choke pressure, the ratio of oxygen flow rate to the acetylene flow rate under the selected pressures to the orifices being such that an increase in pressure for the selected orifice sizes does not substantially change the flow characteristics out of the orifices in the choked state as compared to a decrease in gas pressure to below choke conditions which results in an adverse change in flame characteristics, the flow of the gases through the orifices in the choked state into the mixing chamber resulting in optimum flame chemistry as measured in terms of optimum BTU's per hour.
Abstract:
A flame spray powder mix is provided for producing metal coatings on metal substrates, such as ferrous metal substrates, e.g. steel, cast iron, among other metal substrates, the powder mix comprising agglomerates of at least one metal silicide, e.g. titanium disilicide, homogeneously mixed with a coating metal powder, such as nickel powder. The mix may additionally contain agglomerates of silicon powder with the coating metal powder making up the major portion of the powder mix.
Abstract:
POWDERED THEMOPLASTIC SUBSTANCES ARE SPRAYED IN HEATED FORM AGAINST A SUBSTRATE, BY ENTRAINING THE POWDER COLD IN A GAS STREAM, AND EJECTING THE GAS STREAM FROM A NOZZLE IN THE FORM OF A FLAT CLOUD. THE CLOUD IS CONFINED BETWEEN A PAIR OF FURTHER GAS STREAMS AND IS HEATED ON THE WAY TO THE SUBSTRATE. HEATING MAY BE EFFECTED BY PASSING THE CLOUD SANDWICHED BETWEEN ITS CONFINING STREAMS, BETWEEN A PAIR OF OPPOSED ELECTRIC HEATING ELEMENTS. ALTERNATIVELY, HEATING MAY BE EFFECTED BY HEATING THE CONFINING STREAMS THEMSELVES, PARTICULARLY IF THE CONFINING STREAMS ARE FLAMES EMERGING FROM A BURNER.