Abstract:
It is proposed a design and control of series elastic holonomic mobile platform, aimed to administer therapeutic table-top exercises to patients who have suffered injuries that affect the function of their upper extremities. The proposed mobile platform is a low-cost, portable, easy-to-use rehabilitation device for home use. It consists of four actuated Mecanum wheels and a compliant, low-cost, multi degree-of freedom Series Elastic Element as its force sensing unit. Thanks to its series elastic actuation, it is highly backdriveable and can provide assistance/resistance to patients, while performing omni-directional movements on plane. The device helps improving accuracy and effectiveness of repetitive movement therapies completed at home, while also providing quantitative measures of patient progress.
Abstract:
An output member is connected with an input member through three sets of link mechanisms for alteration in attitude. The link mechanism includes end portion link mechanisms on an input side and an output side, respectively, and an intermediate link member. The link mechanism is such that a geometric model of each of the link members expressed by lines represents such a shape as an input side portion and an output side portion relative to a center of the intermediate link member are symmetrical with each other. By actuating two or more sets of the link mechanisms by means of a link mechanism drive source, the attitude of the output member is controlled. Through the inside of an arrangement of the link mechanisms, a flexible wire is provided for transmitting a rotational force in a direction of arrangement of the input and output members.
Abstract:
A link actuation device includes a distal end side link hub connected with a proximal end side link hub through three or more sets of link mechanisms for alteration in orientation. By means of an actuator provided in the two or more set of the link mechanism, the distal end orientation, which is the orientation of the distal end side link hub relative to the proximal end link hub, is changed arbitrarily. The operating device includes an orientation designating unit for designating the distal end orientation aimed at by means of a coordinate position on the orthogonal coordinate system by an artificial manipulation, an orientation acquiring unit for acquiring the distal end orientation that is expressed by an angular coordinate system through calculation, and an orientation information applying unit for applying information on the distal end orientation so acquired to a control device for controlling the actuator.
Abstract:
A bearing is interposed in the revolute pair between a proximal end side link hub (2) and each proximal side end link member (5). A control device controls an actuator, to perform work-time control for causing a determined work operation to be executed and to perform, while the work-time control is stopped, grease circulation control for circulating grease sealed in the bearing. The maximum value θmax of a bending angle in the work-time control does not exceed the maximum allowable bending angle θ′max being the maximum value of the bending angle allowable in the mechanism, and the maximum value of the bending angle in the grease circulation control is greater than the maximum value θmax of the bending angle in the work-time control and smaller than the maximum allowable bending angle θ′max.
Abstract:
A parallel manipulator is provided. The parallel manipulator includes a base plate, a plurality of motor devices coupled to the base plate, arm modules coupled respectively to the plurality of motor devices, and a support member hinged to ends of the arm modules. Here, the motor device includes a motor and a gear module coupled to the motor, and each of the arm modules includes an elastic arm unit coupled to the gear module to absorb an external force so as to prevent a step-out error from taking place in the gear module, an upper arm unit hinged to the base plate and having the elastic arm unit hinged to one end thereof, and a lower arm unit having the other end of the upper arm unit hinged to one end thereof and the support member hinged to the other end thereof
Abstract:
A master-slave system using a 4-degree of freedom (DOF) parallel mechanism includes: a master device having a 4-DOF parallel mechanism which generates 1-DOF translation and 3-DOF rotation by the manipulation of a user; a slave device having a 4-DOF parallel mechanism which generates 1-DOF translation and 3-DOF rotation according to the movement of the master device; and a controller for receiving a behavior signal generated by the master device and outputting a driving signal to the slave device so that the slave device moves according to the movement of the master device. The master-slave system may be utilized as a remote needling robot with excellent manipulation and precision.
Abstract:
A user interface system comprises a plurality of linkages connected between a platform and abase. The linkages permit motion of the platform over at least a portion of a spherical surface. A support assembly coupled between the platform and the base comprises a spherical joint having a centre of rotation substantially concentric with a centre of the spherical surface. The spherical joint constrains motion of the platform to the spherical surface. The system may include a sensor corresponding to each linkage. Each sensor may be coupled to sense a movement of its corresponding linkage in response to motion of the platform over the portion of the spherical surface. A user-manipulable handle may be coupled to the platform so that the user can move the platform.
Abstract:
A controlled relative motion system comprising a base support, a pivot holder and a plurality of pivoting links with the pivoting links rotatably coupled to both the base support and to members of the pivot holder to rotate about axes which extend in different directions for each of these rotatable couplings in a link, typically in accord with specific geometrical arrangements, and in different directions from similar axes in another of such links. The foregoing various rotatable couplings are provided by insertable bearings or bushings in the supports and links. The pivoting links have larger portions thereof outside of the interior of the manipulator parts of which can extend outside in different directions. Such systems can incorporate a variety of force imparting members to control movements of various ones of the pivoting links or pivot holder members.
Abstract:
A Six-Degree-of-Freedom Parallel-Manipulator having three inextensible limbs for manipulating a platform is described in which the three inextensible limbs are attached via universal joints to the platform at non-collinear points. Each of the inextensible limbs is also attached via universal joints to a two-degree-of-freedom parallel driver such as a five-bar lineage, a pantograph, or a bidirectional linear stepper motor. The drivers move the lower ends of the limbs parallel to a fixed base and thereby provide manipulation of the platform. The actuators are mounted on the fixed base without using any power transmission devices such as gears or belts.
Abstract:
A mechanism is constructed by twelve-axis geometry and controlled by spherical coordinate, so that all torques in twelve axes can be parallelly integrated. Timing belts, pulleys, hollow shafts, and spur gears onto four arc-link sets are included. Via these transmission components, base arc-links can be indirectly but synchronously rotated by base driving modules and terminal arc-links can be indirectly but synchronously rotated by terminal driving modules. The final output torque can be integrated via serial linking and parallel cooperating by the twelve rotating modules. Therefore, four arc-link sets work cooperatively and effectively in group but bear no burden each other. The mechanism can be applied to a multi-axis composite machining center machine or a multi-time element detection measuring bed and shoulder joints or hip joints corresponding to robots.