Abstract:
Thin film labels, systems, and methods of making and using thereof are described. The thin film systems contain a label and a carrier film, where the label contains an overprint layer, indicia, and an adhesive layer. The carrier film may be coated on one or both sides with a release liner. The adhesive layer can be any suitable adhesive, such as a pressure sensitive adhesive, a fluid activatable adhesive, a heat activated adhesive, or a contact activated adhesive. The label is formed by printed or coating one or more layers of precursor material on the carrier film using standard printers. Suitable precursor materials include, but are not limited to epoxys, solvent cast films, polyurethane dispersions, such as acrylic-urethane hybrid polymer dispersions and polyester-polyurethane dispersions. After the overprint layer dries or is cured, the indicia are printed onto the overprint layer, then the adhesive is coated on top of the indicia.
Abstract:
A method of creating a fluid layer in the micrometer range includes transferring a fluid between substrates and forming a fluid layer. A surface energy of a first substrate releasing the fluid is higher than a surface energy of a fluid on the first substrate to create a first fluid deposit on the first substrate. A surface energy of a second substrate accepting the fluid is lower than a surface energy of a fluid on the second substrate to create a second fluid deposit on the second substrate that is reduced as compared to the first fluid deposit. A surface energy of a third substrate accepting the fluid is higher than a surface energy of a fluid on the third substrate to create a substantially homogeneous third fluid deposit on the third substrate that forms the fluid layer.
Abstract:
Provided are a method for producing two or more patterned substrates, which has a simple process and is efficient, and an apparatus for producing two or more patterned substrates.
Abstract:
Disclosed herein is a bubble discharging structure, including a substrate which has a first area and a second area adjacent to the first area, and on which a counter substrate is caused to come in contact with the first area to provide a film having a first pattern, and a bubble discharging path through which the first area and the second area communicate with each other, and through which a bubble confined between the substrate and the counter substrate when the counter substrate is caused to come in contact with the first area is discharged from the first area to the second area.
Abstract:
A method of creating a fluid layer in the micrometer range includes transferring a fluid between substrates and forming a fluid layer. A surface energy of a first substrate releasing the fluid is higher than a surface energy of a fluid on the first substrate to create a first fluid deposit on the first substrate. A surface energy of a second substrate accepting the fluid is lower than a surface energy of a fluid on the second substrate to create a second fluid deposit on the second substrate that is reduced as compared to the first fluid deposit, A surface energy of a third substrate accepting the fluid is higher than a surface energy of a fluid on the third substrate to create a substantially homogeneous third fluid deposit on the third substrate that forms the fluid layer.
Abstract:
A printing device employing a rewritable plate, includes: a first plate forming member forming a rewritable plate; a latent image forming unit as to the first plate forming member; a protrusion forming unit selectively adhering an ink-repellent particle to a portion where a latent image on the surface of the first plate forming member is formed; a second plate forming member accepting and holding the ink-repellent particle adhered onto the surface of the first plate forming member using a hollow included in the surface; a pressure adhesion unit configured to push the ink-repellent particle adhered into the hollow; and a recording material supply unit supplying a recording material to the surface of the second plate forming member; with the surface of the ink-repellent particle having a property of repelling the recording material, and also the surfaces of the plate forming members having a property not to repel the recording material.
Abstract:
A print structure includes a pattern layer that selectively actuates one or more of a plurality of actuators to selectively form one or more wells in a print surface to create a defined pattern on the print surface. A material is applied to the one or more wells and subsequently transferred to another surface in order to transfer the pattern.
Abstract:
A method of preparing a thermally printable sheet which comprises providing a substrate comprising a base sheet having at least one surface coated with a layer containing a pigment in solid porous particulate form, and, using a printer, printing onto the coated surface of said substrate, a thermal ink which comprises a colour former, a colour developer and a sensitizer, characterised in that the sensitizer comprises dimethyl terephthalate, and that the ink also comprises at least one pigment. A novel thermally printable sheet suitable for use in such method is also provided.
Abstract:
A method of offset printing wherein a layer of varnish or similar coating material is deposited onto a print drum and an ink image pattern layer is printed upon the varnish layer using a technique such as inkjet printing; the print drum transfers the ink layer onto a print substrate with a portion of the varnish layer thereupon, thus acting as a covering layer for the printed image.
Abstract:
An intaglio-printing press for printing security documents comprising a plate cylinder (4) with at least one engraved printing plate (6), an impression cylinder (3), a wiping device (10) and an inking system, (5, 7a-8d); it further comprises a laser marking device with laser marking heads (15) arranged facing said plate cylinder downstream from said wiping device and upstream from the contact zone between said plate cylinder and said impression cylinder.