Abstract:
The present invention relates to a sealing device designed for sealing a fuel inlet opening of an aircraft engine and to an aircraft engine provided with such a sealing device. The invention further relates to a method for sealing a fuel inlet opening of an aircraft engine.
Abstract:
A barrel assembly for a composite structure includes a barrel of composite material, a first end ring, and a mid support. The barrel of composite material has a first end, an interior surface and an outer surface, and the first end ring is removably attached to the first end. The first end ring has a perimeter that is substantially congruent with the first end, and is configured to maintain a shape of the barrel. The mid support is removably disposed within the barrel, and has a plurality of spokes extending outwardly from a central hub to contact the interior surface, to maintain a shape of the barrel.
Abstract:
A system includes a turbomachine platform including a first docking guide. The turbomachine platform supports a turbomachine skid, and the skid includes a second docking guide. The first docking guide is configured to interface with the second docking guide in order to guide the turbomachine skid between a docked position and an undocked position relative to other equipment supported by the platform.
Abstract:
A barrel assembly for a composite structure includes a barrel of composite material, a first end ring, and a mid support. The barrel of composite material has a first end, an interior surface and an outer surface, and the first end ring is removably attached to the first end. The first end ring has a perimeter that is substantially congruent with the first end, and is configured to maintain a shape of the barrel. The mid support is removably disposed within the barrel, and has a plurality of spokes extending outwardly from a central hub to contact the interior surface, to maintain a shape of the barrel.
Abstract:
A system and method are provided to automate the assembly of a wing panel, such as utilized by commercial aircraft. In the context of a system, a tacking cell is provided that is configured to tack one or more stringers to a skin plank. The system also includes a riveting cell configured to receive a tacked plank from the tacking cell and to rivet the one or more stringers to the skin plank. The system also includes a splicing cell configured to receive a plurality of riveted planks from the riveting cell and to attach one or more splice stringers to the plurality of riveted planks. Further, the system includes a side of body cell configured to receive a spliced panel from the splicing cell and to attach a side of body chord thereto to produce a wing panel.
Abstract:
According to one embodiment, an aircraft part storage system includes a first storage device and a second storage device. The first storage device is configured to be coupled to an aircraft part and operable to store and transmit a first set of information about the aircraft part. The second storage device is configured to be coupled to the same aircraft part and operable to store and transmit a second set of information about the aircraft part. The second storage device has a larger storage capacity than the first storage device but a shorter transmission range than the first storage device.
Abstract:
An assembly jig includes an upper jig frame that is provided above a longitudinal outer edge of a large structure, a lower jig frame that is provided below a longitudinal outer edge of the large structure, a connecting jig frame that connects the upper jig frame and the lower jig frame to each other, three supporting parts for supporting the lower jig frame from below, and a jig leg portion that is provided perpendicular to the direction in which the lower jig frame extends and parallel to a ground surface. The supporting parts are provided at three portions that are respectively located under two end portions of the jig leg portion and under the lower jig frame, and arrangement positions of the supporting parts provided at the three portions form a substantially triangular shape when seen from above.
Abstract:
A method and apparatus for manufacturing a structure. A part for the structure may be supported on a plurality of mobile fixtures configured to control an orientation of the part. The part for the structure may be moved using the plurality of mobile fixtures to a number of stations for performing a number of operations for manufacturing the structure using the part. The plurality of mobile fixtures may be configured to move in a coordinated manner and substantially maintain a desired orientation for the part while moving the part to a station in the number of stations. The number of operations for manufacturing the structure may be performed at the number of stations while the plurality of mobile fixtures supports the part.
Abstract:
A positioning system is provided for mounting a wing of an aircraft to a fuselage of the aircraft. The positioning system includes, but is not limited to a programmable mounting unit that can perform a final adjustment and alignment of the wing with respect to the fuselage without user interaction.
Abstract:
A method of lifting an aircraft at a lifting location, the method comprising: securing a fitting (10) to the aircraft when the aircraft is at the lifting location; engaging the fitting with a crane hook (100); transmitting lifting load from the crane hook to the aircraft via the fitting; and removing the fitting from the aircraft. A fitting (10) for transmitting lifting loads from a crane hook (100) to an item, the fitting comprising: an attachment member (11) configured to be secured to the item; and a lifting member (12) which is pivotally coupled to the attachment member and configured to be engaged by the crane hook (100) so as to transmit lifting loads from the crane hook to the item. A crane hook (100) with a ball-and-socket connection is provided. The crane hook has an attachment link (106) having a first pivot point (107) attached to the hook forward of its center of gravity, and a second pivot point (109) configured to be lifted by a crane, —and a biasing system which applies a biasing force to the attachment link causing the attachment link to rotate about the first pivot-point whereby the second pivot point moves towards the rear of the hook when the hook is unloaded.