Abstract:
A transmission joint for angularly connecting a first and a second member, and having a coupling member interposed functionally between the first and second member and extending about an axis; the coupling member has: a first portion connectable angularly to the first member, a second portion connectable angularly to the second member and located radially outwards of the first portion, and an intermediate portion interposed radially between the first and second portion and elongated in a direction crosswise to the axis; the intermediate portion of the coupling member has, from the first portion to the second portion, a first portion decreasing in thickness crosswise to the direction, and a second portion of constant thickness.
Abstract:
A motor having improved mechanism is composed of a body of revolution having a mounting hole in the center of the body; a rotor hub having a boss section to be inserted into the mounting hole of the body of revolution and a flange section supporting the body of revolution; and an elastic plate installed coaxially to the rotor hub and pressing the body of revolution on the flange section of the rotor hub, wherein the elastic plate is provided with a plain section having a hole in the center and a plurality of arm sections extending radially from an outer circumference of the plain section, and wherein each of the arm sections is provided with a first slanting section that is inclined with respect to the plain section and a second slanting section having an angle of gradient different from that of the first slanting section, and further wherein the first slanting section contacts with an outer circumferential edge of the boss section that confronts with an inner wall surface of the mounting hole of the body of revolution and the second slanting section contacts with a top end edge of the inner wall surface of the mounting hole.
Abstract:
A transmission joint for angularly connecting a first and a second member, and having a coupling member interposed functionally between the first and second member and extending about an axis; the coupling member has: a first portion connectable angularly to the first member, a second portion connectable angularly to the second member and located radially outwards of the first portion, and an intermediate portion interposed radially between the first and second portion and elongated in a direction crosswise to the axis; the intermediate portion of the coupling member has, from the first portion to the second portion, a first portion decreasing in thickness crosswise to the direction, and a second portion of constant thickness.
Abstract:
A coupling plate for an engine-driven generator on which a balance weight can be mounted and which is simple in structure and is constituted by the same hole making pattern is provided.In a coupling plate for an engine-driven generator driving a generator “G” by an engine “E”, a plurality of elastic disks 22 overlapped integrally are provided, and the elastic disks have one of the inner circumference side and the outer circumference side in the radial direction connected to the engine and the generator as the input side and the other as the output side, and in each of the elastic disks, a plurality of holes including small-diameter weight mounting holes 222 and large-diameter weight escape holes 223 distributed/arranged with a predetermined interval in the circumferential direction are drilled so that the holes of the respective disks are positionally overlapped with each other.
Abstract:
A two-piece flywheel for use with an automotive engine includes a central plate having an annular periphery surrounded by a ring gear. The ring gear includes an outer circumference having a plurality of radially-outwardly extending gear teeth and an inner circumference. The inner circumference of the ring gear is seam welded continuously about 360 degrees to the annular periphery of the central plate.
Abstract:
A drive arrangement for a motor vehicle includes a drive shaft, a coupling device, and a coupling arrangement. The drive shaft is connectable with the coupling device for transmission of force solely via the coupling arrangement. The coupling arrangement has a first toothing arrangement connectable with the drive shaft so that the first toothing arrangement is fixed with respect to rotation relative to the drive shaft and a second toothing arrangement connectable with the coupling device so that the second toothing arrangement is fixed with respect to rotation relative to coupling device. The first toothing arrangement and second toothing arrangement engage when the drive shaft and coupling device are coupled together for transmission of force.
Abstract:
A drive arrangement for a motor vehicle includes a drive shaft, a coupling device, and a coupling arrangement. The drive shaft is connectable with the coupling device for transmission of force solely via the coupling arrangement. The coupling arrangement has a first toothing arrangement connectable with the drive shaft so that the first toothing arrangement is fixed with respect to rotation relative to the drive shaft and a second toothing arrangement connectable with the coupling device so that the second toothing arrangement is fixed with respect to rotation relative to coupling device. The first toothing arrangement and second toothing arrangement engage when the drive shaft and coupling device are coupled together for transmission of force.
Abstract:
A drive plate (E) for an automotive vehicle for transmitting a torque from a crankshaft (6) to a torque converter (7), while absorbing a thrust load applied from the torque converter to the crankshaft is formed with: a central mount portion (11) for mounting a crankshaft; an outer gear (20) formed in an outermost circumference of the drive plate; a plurality of weight reducing holes (30) formed between the central mount portion and the outer gear at regular angular intervals; and a plurality of the outer mount portions (12) for mounting a torque converter (7) formed near an outer circumference of the drive plate at regular angular intervals. In particular, the outer mount portions (12) are formed in such a way as to project radially inward from the outer gear (20) into the weight reducing holes (30), respectively. Since the virtual bending radius (deformation length L) of the drive plate can be increased, the bending angle (DA1) can be reduced when a thrust load is applied from the torque converter to the drive plate, so that it is possible to reduce a bending stress concentrated at the central mount portion (11) as small as possible, for prevention of the drive plate from being damaged.
Abstract:
A drive apparatus includes an electric motor, a speed reducer and a coupling member located between the motor and the speed reducer. The output shaft of the motor and the input shaft of the speed reducer are provided with longitudinally extending grooves having a square or rectangular cross section in which barrel members having the mating cross section are inserted, respectively to absorb any gap therebetween. The box like barrel member has four segments which are brought into resilient contact with the groove.
Abstract:
A coupling spring element is provided for which assembly without access and with no play, and a torsion-proof transmission of shaft revolutions is possible and has superior spring elastic properties to which, a plate-shaped element is provided with an essentially central connection region for connection to one shaft and a connection region formed at the outer circumferential region for connection to one additional shaft, and has slot-like recesses between the two connection regions.