Abstract:
Screw connection for a non-shiftable multiple plate clutch with a clamping bolt, a bolt nut cooperating with the clamping bolt, and a clamping bushing which likewise cooperates with the clamping bolt. A seat between the clamping bolt and clamping bushing has at least one gradation such that a first cylindrical seat surface having a first diameter is formed at a first side of the respective gradation and a second cylindrical seat surface having a second diameter is formed at a second side of the respective gradation.
Abstract:
A flexible coupling includes a flexure, a first drive member defining an axis and connected to the flexure, and a second drive member. The second drive member defines an axis and is connected to the flexure on a side of the flexure opposite the first drive member. An angular stop is fixed within the first drive member, extends through a portion of the second drive member, and is arranged to limit angular misalignment of the first drive member axis relative to the second drive member axis while transmitting torque between the first and second drive members.
Abstract:
A torque converter, including: an axis of rotation; a cover arranged to receive torque from an engine; an impeller shell fixedly secured to the cover; at least one impeller blade fixedly secured to the impeller shell; a turbine including a turbine shell and at least one turbine blade fixedly secured to the turbine shell; and an output arranged to non-rotatably connect to an input shaft for a transmission. The cover includes a plurality of indentations and a respective fastener located in each indentation and fixedly secured to the cover.
Abstract:
A two-piece flexplate assembly having a ring gear welded to a central plate using a capacitor discharge welding process. The weld is established between a joining structure defined between the ring gear and the central plate using either an overlap arrangement, a projection arrangement, or a chamfer arrangement.
Abstract:
A torque transmission device of a motor vehicle which transmits torque from an internal combustion engine to a torque converter, wherein the torque transmission device includes transmission part connected to the torque converter in a first radius region having a quantity of fastening elements lying on a first radius and connected to the internal combustion engine in a second radius region having a quantity of fastening elements lying on a second radius. To reduce loading of the fastening elements, the transmission part is provided with recesses in the first radius region and/or in the second radius region that extend at least partially over the first or second radius region and lessen the axial rigidity of the transmission part.
Abstract:
Two embodiments of an improved connection between an engine output shaft and a transmission input shaft reduce or eliminate axial shaft loading and spin losses. In a first embodiment, the transmission input shaft includes an annular flange which is received within a slightly larger annulus or a plurality of axially extending tabs from the engine flex plate. After the transmission and engine are assembled, a plurality of fasteners are installed in radial openings in the flex plate annulus or tabs and extend into threaded openings in the annular flange. Since the output and input shafts are connected after the engine and transmission are assembled there is essentially no deflection of the flex plate, no axial loads on the shafts and no spin losses. In a second embodiment, a plurality of axially oriented threaded fasteners extend through openings in the flex plate and are received within nuts in a transmission drive plate. The nuts include eccentric flanges and are retained in the drive plate by snap rings. This eccentricity creates a reaction torque when the threaded fasteners are tightened. Because the nuts are free to travel and accommodate a small axial distance, deflection of the flex plate does not occur.
Abstract:
A coupling for transmitting torque between a driving element and a driven element, one of which is rotatable about an axis an formed with an annular array or mounting holes centered on the axis, has an elastomeric ring centered on the axis and having a dished face concave toward and directed axially at one of the elements and an opposite generally planar face directed axially at the other of the elements. Respective face plates conform and are vulcanized to the faces. Formations serve for connecting the face plate of the planar face directly to the other element. An annular and thin coupling disk centered on the axis has an outer periphery and an inner periphery and an inner face turned toward the elastomeric ring and an outer face turned away therefrom. Bolts secure the disk outer periphery directly to an outer edge of the face plate of the dished face.
Abstract:
A flexible disk for connecting a transmission shaft to rotate with a mechanical part, the flexible disk being suitable for forming rotary motion about an axis of rotation and including in succession going from its center towards its periphery an empty central zone (10), a circular base (20), a transition zone (30) having an outer face (32) and an inner face (31), and then a peripheral collar (41). The transition zone presents a minimum thickness (e1) at the edge of the peripheral collar (40), the minimum thickness being determined with the help of the following thickness relationship in which “e” represents the thickness of the transition zone at a first distance “r” from the axis of rotation, “Q” is a constant that depends on the misalignment, “C” is the torque applied to the transmission shaft, “r” is the first distance, and “R” is the radius of the empty central zone: e = 1 2 r 2 ( Q C - 2 r r 4 - R 4 )
Abstract:
The invention relates to a drive unit comprising an internal combustion engine and a gearbox for motor vehicles, wherein for transmitting a torque to the transmission a crankshaft of the internal combustion engine is connected to a transmission-side element via a carrier plate. According to the invention, the carrier plate is designed in at least two parts with separate plate sections.
Abstract:
The present invention relates to a flexible bearing assembly for use in a transmission system. The flexible bearing assembly has a gear mounted to a first shaft, first and second pinions connected to a second shaft, and a flexible coupling element connected to the gear and the first pinion. The flexible coupling element is preferably formed by a flexible diaphragm.