Abstract:
An apparatus for information extraction from electromagnetic energy via multi-characteristic spatial geometry processing to determine three-dimensional aspects. Structure receives the electromagnetic energy, which has a plurality of spatial phase characteristics. Structure separates the plurality of spatial phase characteristics of the received electromagnetic energy. Structure identifies spatially segregated portions of each of the plurality of spatial phase characteristics, with each spatially segregated portion corresponding in a point to point relationship to a spatially segregated portion for each of the other of the plurality of spatial phase characteristics in a group. Structure quantifies each segregated portion to provide a spatial phase metric of each segregated portion for providing a data map of the spatial phase metric of each separated spatial phase characteristic of the plurality of spatial phase characteristics. Structure processes the spatial phase metrics to determine surface contour information for each segregated portion of the data map.
Abstract:
Wavefront sensing apparatus comprises a beam splitter (106) for combining a wavefront to be characterised (105) with a frequency-shifted plane wavefront (111) and a bundle of optical fibres (112) arranged to detect the combined beam at a plurality of positions across the combined beam. Output from individual fibres of the bundle are detected to produce corresponding heterodyne signals, the phases of which are extracted by demodulation. By fitting the extracted phases to an assumed functional form for the phase of the wavefront to be characterised, the piston, tip, tilt and radius of curvature phase parameters of the wave-front to be characterised may be found at the position of the fibre bundle. In contrast, prior art methods of wavefront characterisation only allow the piston phase of the wavefront to be characterised to be obtained.
Abstract:
A segmented array, perfectly aligned except for piston wraps, will have perfect imaging at wavelength λ but will have degraded imaging at other wavelengths. The present method detects and corrects piston wraps by making image-based measurements at a wavelength λ and a second wavelength λ1. These measurements will produce an image of the piston-wrapped segments and the intensities of these segments in the image at wavelength λ1 are linearly related to the sizes of the piston wraps at wavelength λ. The method needs no additional equipment like inter-segment apertures, lenslets, and detectors. It needs only a narrowband filter to change the measurement wavelength from λ to λ1.
Abstract:
The present invention relates to a wavefront sensor using a pair of screens, each having a two-dimensional array of circular apertures, to achieve Moiré effects, and its use to measure the slope of a wavefront.
Abstract:
In an optics system, a flexible mirror is deformed with an electromagnetic force. In one embodiment, an electrical current is directed through the mirror, or a conductor attached to the mirror, in the presence of a magnetic field. In one application in an adaptive optics system, the membrane mirror is used in a wavefront sensor. Deformed to oscillate between convex and concave positions, the mirror is used to alternately defocus a received light signal for determining aberrations in the light signal. By detecting aberrations in the light signal, the adaptive optics system can correct for those aberrations.
Abstract:
Optical apparatus for simultaneously focussing first and second coaxially spaced object planes in respective separate first and second areas of a common image plane 13 (such as the sensor of a CCD camera) comprises non-diffractive beamsplitter means for receiving light from said object planes along a common path 2 for transmission to said first and second image areas along respective first and second optical paths 3, 4, and reflective or transmissive focussing means 8 arranged to bring said first and second object planes into focus in said first and second areas. The object planes may be differentiated by having different length paths 3,4 (different physical lengths and/or using a differential optical delay), and/or by having different focussing powers in the two paths. In an add-on for a camera, differently curved mirrors of long focal length modify the main camera lens. Polarising optics may be used to separate the two images. The apparatus may be used for 3-D imaging or wavefront analysis.
Abstract:
A 1-dimensional sensor for measuring wavefront distortion of a light beam as a function of time and spatial position includes a lens system which incorporates a linear array of lenses, and a detector system which incorporates a linear array of light detectors positioned from the lens system so that light passing through any of the lenses is focused on at least one of the light detectors. The 1-dimensional sensor determines the slope of the wavefront by location of the detectors illuminated by the light. The 1 dimensional sensor has much greater bandwidth that 2 dimensional systems.
Abstract:
Provided is a metalens array and a wavefront sensor system, and the metalens array includes: at least a metalens array unit; and the metalens array unit includes: a transmittive metalens array, the transmittive metalens array includes: a plurality of transmittive metalens at different working waveband, and the plurality of transmittive metalens have the same focal length and can be used for focusing incident lights of different wavelengths to different positions of a first plane. According to the present disclosure, a plurality of transmittive metalens with different working wavelengths may focus the light of different wavelengths at different positions in the focal plane and obtain the focal point offset of different wavelengths, so as to calculate wavefront of multiple wavelengths.
Abstract:
An example deformable mirror includes a number of cells defining an aperture plane of the mirror. Each of the cells includes a first transparent electrode layer and a second reflective electrode layer, with a solid crystal electro-optical (EO) active layer between the electrode layers. The deformable mirror includes a reflective layer optically coupled to each of the cells on the reflective side of the cell.
Abstract:
A compact adaptive optics system for long-range horizontal paths imaging that improves degraded images. The system uses a filter that corresponds to the three colors in a typical color detector element, one or more optic elements, a deformable mirror, and a detector. Focus errors, due to turbulence, in the image recorded by the detector element show up as image shifts in the three distinct color images. The shifts and statistics of these shifts between these simultaneous images are used to create control signals for the deformable mirror resulting in a compact adaptive optic system for horizontal paths without need for a point source located at the distance scene being imaged. Analysis of the relative pixel shifts in various regions of the image provides third order statistics revealing tip/tilt and additional Zernikes modes that are used to control a deformable mirror without the need for a guide star/point-source.