Abstract:
A digital watermarking based method for objectively evaluating quality of stereo image includes: at transmitting terminal, extracting characteristics of the left-view image and the right-view image of an undistorted stereo image in DCT domain and embedding digital watermarking obtained by processing quantization coding on the characteristics into the DCT domain; at a receiving terminal, detecting the digital watermarking embedded in the distorted stereo image and processing decoding and inverse quantization to extract the embedded characteristics of the left-view image and the right-view image of the stereo image, obtaining a stereo perception value and a view quality value of the distorted stereo image according to the embedded characteristics, and finally obtaining an objective quality score of the distorted stereo image utilizing a support vector regression model.
Abstract:
Methods and systems for determining what channel a user is viewing through a TV receiver are described. At the TV receiver, a plurality of TV signals is received. A channel selection is received. The TV receiver tunes to the selected channel from among the plurality of TV signals. A watermark is inserted into a component of the tuned TV signal to form a modified TV signal, and the modified TV signal is output from the TV receiver. The watermark encodes meta-information associated with the tuned TV signal. In some implementations, the modified TV signal is received by a computer system. The watermark from the modified TV signal is processed to decode the meta-information, and the meta-information is provided to an application running on the computer system.
Abstract:
A print control device includes an output unit, an adding unit, and a transmitting unit. The output unit outputs generated print data to a printing mechanism. The generated print data is generated as a result of unit print data, which includes page data of at least one page, being copied; and includes pieces of the unit print data. The adding unit adds blank page data between one piece of unit print data and another piece of unit print data to be printed next in line to the one piece of unit print data. The transmitting unit transmits, to the printing mechanism, information for causing an additional image to be formed on a medium when an image based on the page data is printed on the medium, and information for causing the additional image not to be formed on a blank page formed based on the added blank page data.
Abstract:
According to an embodiment, a data embedding apparatus includes a data acquisition unit and an object generation unit. The data acquisition unit acquires first data formed from a first bit string to be embedded in a first object including a first line segment or a first curve. The object generation unit generates a second object, which includes a deformed line segment or a deformed curve having a displacement corresponding to the first bit string with respect to the first line segment or the first curve and in which the first data is embedded, by deforming at least one of the first line segment and the first curve of the first object based on the first bit string.
Abstract:
An encoding apparatus partitions a digital image into multiple regions for subsequent encoding. A first encryption code is associated with a first region, a second encryption code is associated with a second region and the first code, and a third code is associated with the first code, the second code and a third region. An authentication apparatus authenticates the digital image in an inverse process.
Abstract:
A print control device includes an output unit, an adding unit, and a transmitting unit. The output unit outputs generated print data to a printing mechanism. The generated print data is generated as a result of unit print data, which includes page data of at least one page, being copied; and includes pieces of the unit print data. The adding unit adds blank page data between one piece of unit print data and another piece of unit print data to be printed next in line to the one piece of unit print data. The transmitting unit transmits, to the printing mechanism, information for causing an additional image to be formed on a medium when an image based on the page data is printed on the medium, and information for causing the additional image not to be formed on a blank page formed based on the added blank page data.
Abstract:
Methods and arrangements involving portable devices, such as smartphones and tablet computers, are disclosed. One arrangement enables a creator of content to select software with which that creator's content should be rendered—assuring continuity between artistic intention and delivery. Another arrangement utilizes the camera of a smartphone to identify nearby subjects, and take actions based thereon. Others rely on near field chip (RFID) identification of objects, or on identification of audio streams (e.g., music, voice). Some of the detailed technologies concern improvements to the user interfaces associated with such devices. Others involve use of these devices in connection with shopping, text entry, sign language interpretation, and vision-based discovery. Still other improvements are architectural in nature, e.g., relating to evidence-based state machines, and blackboard systems. Yet other technologies concern use of linked data in portable devices—some of which exploit GPU capabilities. Still other technologies concern computational photography. A great variety of other features and arrangements are also detailed.
Abstract:
An encoding apparatus partitions a digital image into multiple regions for subsequent encoding. A first encryption code is associated with a first region, a second encryption code is associated with a second region and the first code, and a third code is associated with the first code, the second code and a third region. An authentication apparatus authenticates the digital image in an inverse process.
Abstract:
Methods, apparatus, systems, and articles of manufacture are disclosed to perform time alignment for watermarks. An example apparatus adjusts a power value of an element of a template based on respective average magnitudes and respective tonality ratios corresponding to a plurality of frequency representations of a media signal, the media signal to be encoded with at least one watermark, the element corresponding to one of the plurality of frequency representations. Additionally, the example apparatus computes an alignment of the template to the media signal based on respective power values of elements of the template, the template corresponding to a type of the at least one watermark. The example apparatus also encodes the media signal with the at least one watermark according to the alignment.
Abstract:
To make a payment, a smartphone presents artwork for a payment card (e.g., a Visa card) that has been selected by a user from a virtual wallet of such cards. Encoded in the displayed artwork is payment information that has been encrypted with a context-dependent session key. A cooperating system (e.g., a retailer's point of sale system) uses a camera to capture an image of the artwork, and independently creates the session key from its own context sensor(s), enabling decryption of the payment information. Such technology provides a superior transaction security model at a fraction of the cost of competing chip card payment systems (which require, e.g., expensive physical cards, and single-purpose reader hardware). A great variety of other features and arrangements are also detailed.