摘要:
A high dynamic range image information hiding method includes embedding secret information and extracting the secret information. The step of embedding secret information includes obtaining three channel values of every pixel in an original high dynamic range image; according to every channel value and corresponding 5-bit exponent of every pixel, determining an embedding significance bit of the information to be embedded in every channel value of every pixel; embedding information into every channel value of every pixel; and obtaining a high dynamic range image embedded with the secret information. The step of extracting the secret information includes obtaining three channel values of every pixel in the high dynamic range image embedded with the secret information; obtaining an information embedding position of every channel value embedded with the information of every pixel; extracting information from every channel value embedded with the information of every pixel; and obtaining secret information sequences.
摘要:
A zero-watermarking registration and detection method for HEVC video streaming against requantization transcoding is provided. To increase an attack-resistance of a registration watermarking, the registration method firstly processes depth values corresponding to respective brightness blocks in a target video streaming with a depth binarization during constructing registration watermarking information through depth features, because the depth binarization well reflects a robustness of the registration watermarking. A first watermarking information matrix including a part of the depth values after the depth binarization is encrypted with a random matrix, so as to increase a safety of the registration watermarking. The registration method directly generates zero-watermarking through the depth features of the video streaming without modifying original carrier information and affecting a watermarking transparency. Meanwhile, the registration method has a strong robustness against attacks, such as the requantization transcoding of quantization parameters within a certain range of variation and common signal processing.
摘要:
A method for assessing an objective quality of a stereoscopic video based on reduced time-domain weighting, which considers a time domain perception redundant characteristic of human eyes during a video perception, includes steps of: through a motion intensity mean value and a motion intensity variance of an undistorted stereoscopic video and the motion intensity mean value and the motion intensity variance of each frame group, determining a motion intensity level of each frame group of the undistorted stereoscopic video; for the frame groups having different motion intensity levels, selecting undistorted reduced stereoscopic images through different frame extracting strategies with different densities; measuring a quality of a simultaneous distorted reduced stereoscopic image relative to the undistorted reduced stereoscopic image; through weighting each quality of the simultaneous distorted reduced stereoscopic image relative to the undistorted reduced stereoscopic image, obtaining a quality of a distorted stereoscopic video relative to the undistorted stereoscopic video.
摘要:
A digital watermarking based method for objectively evaluating quality of stereo image includes: at transmitting terminal, extracting characteristics of the left-view image and the right-view image of an undistorted stereo image in DCT domain and embedding digital watermarking obtained by processing quantization coding on the characteristics into the DCT domain; at a receiving terminal, detecting the digital watermarking embedded in the distorted stereo image and processing decoding and inverse quantization to extract the embedded characteristics of the left-view image and the right-view image of the stereo image, obtaining a stereo perception value and a view quality value of the distorted stereo image according to the embedded characteristics, and finally obtaining an objective quality score of the distorted stereo image utilizing a support vector regression model.
摘要:
A digital watermarking based method for objectively evaluating quality of stereo image includes: at transmitting terminal, extracting characteristics of the left-view image and the right-view image of an undistorted stereo image in DCT domain and embedding digital watermarking obtained by processing quantization coding on the characteristics into the DCT domain; at a receiving terminal, detecting the digital watermarking embedded in the distorted stereo image and processing decoding and inverse quantization to extract the embedded characteristics of the left-view image and the right-view image of the stereo image, obtaining a stereo perception value and a view quality value of the distorted stereo image according to the embedded characteristics, and finally obtaining an objective quality score of the distorted stereo image utilizing a support vector regression model.
摘要:
A microscopic image fusion method based on region growing judges the fuzzy degree of the microscopic image and determines the fuzzy seed block by evaluating the definition of every image block in the microscopic image. Then, the fuzzy region and clear region are exactly segmented by region growing and are marked. Finally, a clear and high-quality microscopic image, fused by a plurality of microscopic images, is obtained. Due to the combination of the definition evaluation of the microscopic image, and segmentation of the fuzzy region and clear region by region growing, the fusion results of the microscopic image of the present invention show great advantages at the subjective human perception and the objective evaluation. Furthermore, the present invention has simple calculation and stable result, is easy to be implemented and adapted for fusing the digital optical microscopic images which are shot by shallow depth of field.
摘要:
A zero-watermarking registration and detection method for HEVC video streaming against requantization transcoding is provided. To increase an attack-resistance of a registration watermarking, the registration method firstly processes depth values corresponding to respective brightness blocks in a target video streaming with a depth binarization during constructing registration watermarking information through depth features, because the depth binarization well reflects a robustness of the registration watermarking. A first watermarking information matrix including a part of the depth values after the depth binarization is encrypted with a random matrix, so as to increase a safety of the registration watermarking. The registration method directly generates zero-watermarking through the depth features of the video streaming without modifying original carrier information and affecting a watermarking transparency. Meanwhile, the registration method has a strong robustness against attacks, such as the requantization transcoding of quantization parameters within a certain range of variation and common signal processing.
摘要:
A rapid autofocus method for a stereo microscope includes steps of: calculating a disparity of each of stereo microscopic images in a stereo microscopic calibration image sequence; extracting a clear stereo microscopic image sequence from the stereo microscopic calibration image sequence; then, finding out a largest disparity and a smallest disparity among the disparities of all the stereo microscopic images in the clear stereo microscopic image sequence; at a chosen magnification, arbitrarily acquiring a stereo microscopic image; finally, determining a disparity range according to the disparity of the acquired stereo microscopic image, the largest disparity and the smallest disparity, and realizing an autofocus of a target object in the acquired stereo microscopic images. The disparity range is obtained via once off-line calibration at the same magnification, and applicable to the autofocus at an arbitrary timing.
摘要:
An objective assessment method for a stereoscopic image quality combined with manifold characteristics and binocular characteristics trains a matrix after dimensionality reduction and whitening obtained from natural scene plane images through an orthogonal locality preserving projection algorithm, for obtaining a best mapping matrix. Image blocks, not important for visual perception, are removed. After finishing selecting the image blocks, through the best mapping matrix, manifold characteristic vectors of the image blocks are extracted, and a structural distortion of a distorted image is measured according to a manifold characteristic similarity. Considering influences of an image luminance variation on human eyes, a luminance distortion of the distorted image is calculated according to a mean value of the image blocks. After obtaining the manifold similarity and the luminance similarity, quality values of the left and right viewpoint images are processed with linear weighting to obtain a quality value of the distorted stereoscopic image.
摘要:
A rapid autofocus method for a stereo microscope includes steps of: calculating a disparity of each of stereo microscopic images in a stereo microscopic calibration image sequence; extracting a clear stereo microscopic image sequence from the stereo microscopic calibration image sequence; then, finding out a largest disparity and a smallest disparity among the disparities of all the stereo microscopic images in the clear stereo microscopic image sequence; at a chosen magnification, arbitrarily acquiring a stereo microscopic image; finally, determining a disparity range according to the disparity of the acquired stereo microscopic image, the largest disparity and the smallest disparity, and realizing an autofocus of a target object in the acquired stereo microscopic images. The disparity range is obtained via once off-line calibration at the same magnification, and applicable to the autofocus at an arbitrary timing.