摘要:
Various example embodiments are disclosed herein. According to an example embodiment, an apparatus may include a wireless interface, and a controller, the apparatus being configured to: transmit a downlink subframe of a frequency division duplex (FDD) frame to one or more mobile stations in a wireless network, each wireless station being assigned to one of a plurality of groups, such as, for example, one of group 1 or group 2, the downlink subframe including at least: a group 1 portion and a group 2 portion, wherein a group boundary between the group 1 portion and the group 2 portion of the downlink subframe is variable, at least one of the group 1 portion and the group 2 portion including a group boundary information identifying a location of the group boundary or a location of the group 2 portion in the downlink subframe.
摘要:
The present invention relates to a bandwidth asymmetric communication system comprising at least one terminal having an uplink transmission unit (1) for transmitting radio frequency OFDM signals at a radio frequency and an access point having an uplink receiving unit (4) for receiving said radio frequency OFDM signals, said OFDM signals being Orthogonal Frequency Division Multiplex (OFDM) modulated. To reduce the implementation complexity and synchronization requirements a communication system is proposed in which the bandwidth of said uplink transmission unit and of the transmitted radio frequency OFDM signals is smaller than the bandwidth of said uplink receiving unit. Further, a communication system is proposed in which the bandwidth of a downlink transmission unit (7) of the access point is larger than the bandwidth of a downlink receiving unit (11) of the at least one terminal and in which the downlink transmission unit is adapted to generate and transmit radio frequency OFDM signals having a bandwidth that is smaller than the bandwidth of the downlink transmission unit and that is equal to the bandwidth of the downlink receiving unit. Still further, the present invention relates to a communication method, to a terminal and to an access point for use in such a communication system.
摘要:
Interference is reduced between two radio communication systems. A first radio communication system uses a first and a second frequency ranges which are separated by a duplex gap. A second radio communication system uses a third radio frequency range which forms part of the duplex gap. The first and second radio communication systems exchange information in order to establish an a priori knowledge about a connection on the network side. The a priori knowledge includes the radio transmission resources of the first frequency range provided on the radio communication system side and of the second frequency range and the radio transmission resources of the third frequency range (FB3) desired for call setup and completion. Radio transmission resources are selected depending on the a priori knowledge at the second radio communication system in order to reduce interferences between the first and second radio communication systems.
摘要:
A device receives a communication request for a time division multiple access (TDMA) communication. Upon receipt of the communication request, the device identifies a first communication channel that currently has at least one available TDMA slot and that is currently supporting a greatest number of active TDMA communications amongst a plurality of communication channels. Once the device identifies the first communication channel, the device allocates a first available TDMA slot for the TDMA communication on the first communication channel.
摘要:
A wireless device including a first radio communication portion configured to effect radio communication with a first external communication device while using frequency bands selected one after another from among a group of frequency bands, a field intensity measuring portion which is configured to measure a field intensity value for each of a plurality of frequency bands belonging to at least the group of frequency bands and which is provided in a portion different from the first radio communication portion, and an excluding portion configured to exclude each of the above-indicated plurality of frequency bands for which the measured field intensity value is higher than a predetermined threshold value, from the above-indicated group of frequency bands.
摘要:
A method and system for using half-duplex base stations and half-duplex nodes in a Frequency Division Duplexing region to provide wireless connectivity between the half-duplex base stations and customers in multiple sectors of a cell. The method and system can use two physical channels to form two logical channels. Each logical channel shares both physical channels during alternating frames of time. The half-duplex nodes can include a millimeter-wave band frequency synthesizer configured to transmit and receive on different channels to and from the half-duplex base station. Re-use patterns of the physical channels are used for deployment of half-duplex base stations and half-duplex nodes in the FDD region to minimize co-channel interference and interference due to uncorrelated rain fade. Additional methods and systems utilize full-duplex base stations and smart antenna to communicate with the half-duplex nodes.
摘要:
A method and system for using half-duplex base stations and half-duplex nodes in a Frequency Division Duplexing region to provide wireless connectivity between the half-duplex base stations and customers in multiple sectors of a cell. The method and system can use two physical channels to form two logical channels. Each logical channel shares both physical channels during alternating frames of time. The half-duplex nodes can include a millimeter-wave band frequency synthesizer configured to transmit and receive on different channels to and from the half-duplex base station. Re-use patterns of the physical channels are used for deployment of half-duplex base stations and half-duplex nodes in the FDD region to minimize co-channel interference and interference due to uncorrelated rain fade. Additional methods and systems utilize full-duplex base stations and smart antenna to communicate with the half-duplex nodes.
摘要:
A first copy and a second copy of a signal, which comprises a plurality of TDMA frames, are transmitted from the same antenna. Relative to the first copy, the second copy of the signal has a fixed delay and a random phase. The random phase changes from one of the TDMA frames to another of the TDMA frames. A group of hopping carrier frequencies are partitioned into at least two sets of carrier frequencies. The first copy and the second copy of the signal are transmitted using a sequence of the hopping carrier frequencies, wherein consecutive pairs of the hopping carrier frequencies for consecutive pairs of the TDMA frames are not from the same one of the at least two sets.
摘要:
The present invention relates to a transceiver for bidirectional frequency division multiplexed transmission, a communication system including one or more transceivers. Optionally, the communication system is a communication system for a digital subscriber line. The transceiver comprises transmission means with a voltage source output or a current source output for transmitting data in a transmission frequency range, receiving means for receiving data in a receiving frequency range, and a coupling impedance for connecting the transmission means and the receiving means to a transmission medium. The magnitude of the coupling impedance in the transmission frequency range is smaller than the magnitude of the coupling impedance in the receiving frequency range if the transmission means has a voltage source output and is higher than the magnitude of the coupling impedance in the receiving frequency range if the transmission means has a current source output.
摘要:
In a wireless communication system comprising at least one evolved Node-B (eNB) and a plurality of wireless transmit/receive units (WRTUs), a non-contention based (NCB) channel is established, maintained, and utilized. The NCB channel is allocated for use by one or more WTRUs in the system for utilization in a variety of functions, and the allocation is communicated to the WTRUs. The wireless communication system analyzes the allocation of the NCB channel as required, and the NCB channel is reallocated as required.