Abstract:
The present invention is a low temperature ozone generator using a cryogenic cooling medium. The present invention also provides an efficient method of producing ozone using a cryogenic cooling medium. Finally, the invention is to a method for producing ozone efficiently using liquid nitrogen as the cooling medium.
Abstract:
Disclosed is a fuel activation apparatus using a magnetic force of a magnetic body. The apparatus comprises a hollow cylindrical body, including an inlet through which fuels flow into and an outlet through which the fuels flow out, for forming a predetermined fuel flow space, a magnetic body, including a fuel path allowing the fuels to pass along the center axis of the body, a pair of diaphragms which are disposed at spaces formed between front and rear sides of the magnetic body and an inner circumferential surface of the body, for regulating the flow of the fuels, and fuel guide members which are placed inside the fuel path of the magnetic body, for allowing the fuels to flow in a vortex form, and fuel induction members which are placed at both sides of the magnetic body, for inducing uniform ionization of the fuels. The apparatus provides effects that a flowing speed of the fuels is properly regulated in a magnetic field, and the ionization of the fuels is maximized to obtain uniform minute particles.
Abstract:
A method and an apparatus for cleaning smoke and reducing noises of an internal combustion engine or external combustion engine by using a high voltage field. The present invention relates to a method and an apparatus which can clean exhaust gases and reduce noise, wherein it comprises the step of burning up the granular particles with corona discharge after changing particles into plasma state, the step of removing gaseous materials with negative ions, the step of eliminating NOx with ultraviolet rays and the step of reducing noise.
Abstract:
A low-loss electrode-printed structural dielectric barrier for a non-thermal plasma reactor and non-thermal plasma multi-cell stacks having low-loss electrodes. The low-loss electrode-printed structural dielectric barriers include a structural dielectric barrier having a first side and a second opposite side; a low-loss electrode pattern disposed on the second side of the structural dielectric barrier; the low-loss electrode pattern comprising first and second major electrode sections that are offset from any ribs, supports, ligaments, spacers, tines, or other structure that serves as a structural dielectric connection between dielectric barriers in a multi-cell stack, a connector disposed between and electrically connecting the first and second major electrode sections and offset relative to a centerline perpendicular to the rib orientation, and a bus path connector electrically connected to one of the major electrode sections and offset relative to the centerline.
Abstract:
A dielectric barrier discharge plasma reactor device for plasma-based gas and liquid purification. The device comprises a series of electrodes arranged in rows of alternating polarity so as to form a series of triangular modules in which the spacing between adjacent electrodes is less than or equal to the diameter of an individual electrode. When an electrical power supply is connected to the electrodes, an electrical discharge is produced which reacts with the constituents of the fluid to produce activated radicals. The device further comprises a fluid swiveling device which facilitates homogenous flow of the contaminated fluid through the reactor by providing effective mixing between activated radicals and fluid, such that toxins contained in the fluid are attacked and decomposed by the radicals. A number of alternative embodiments of the fluid swiveling device are described.
Abstract:
An air cleaner having a first photocatalyst carrying member (26) carrying a photocatalyst for cleaning air upon being irradiated with light, a lamp (12) for illuminating the first photocatalyst carrying member (26), and a receiving member (17) receiving a portion between the ends of the lamp (12) through the first photocatalyst carrying member (26). The first photocatalyst carrying member (26) is contained in a containing section (20) of a main body casing (15), for example, and is interposed between the lamp (12) and an innermost portion (21) of the containing section (20). The receiving member (17) may be a projection (24), for example, provided in a standing posture in the innermost portion (21) of the containing section (20).
Abstract:
There is provided a small and light ozone generating apparatus capable of producing ozone with much less consumption of electric power. The present invention comprises a pulse generator for generating high-voltage pulses and a discharge chamber for inducing electrical discharge in response to the high-voltage pulses. The pulse generator includes an LC circuit for compressing square wave signals and generating impulses. The use of impulse greatly reduces electric power consumption and volume of ozone generating apparatus. Electrical discharge takes place between an electrode plate and grounded chamber wall. A sheet of oxide dielectric covers the chamber wall to prevent corrosion of chamber wall.
Abstract:
A method for making an enameled steel sheet includes the steps of spraying a slurry to form a slurry layer onto a surface of a substrate and firing the slurry layer. In this method, the slurry has a static surface tension of 50 dyne/cm or less and an apparent viscosity of 500 mPa·s that is measured with a model E viscometer at a rotation of 100 rpm. Alternatively, the method includes a step of spraying a slurry for forming an enamel layer onto a surface of a substrate, wherein the substrate is vibrated when the slurry is applied or when the slurry applied is still fluid.
Abstract:
An apparatus and method for the use of ozone as a sterilant for many classes of surgical instruments which are at least partially metallic. Three features are the connection of a voltage carrying part of the instrument to be sterilized as the electrode of an ozone generating cell, which employs a glow discharge and maintaining the temperature of this electrode below 500° C., and that no solid dielectric exists between opposed electrodes in the ozone generating cell. Ozone is thereby localized about voltage carrying and any non-voltage carrying parts of the electrode connected instrument. The control of electrode heating helps to maintain the increasing atmospheric concentration of the ozone, which will however eventually reach a natural limit. Local heating of the electrode configuration is controlled where the instrument to be sterilized is connected at least periodically as the negative electrode.
Abstract:
An apparatus and method for reducing hazardous gases exhausted from a process chamber 25 includes an effluent plasma reactor 210 and a downstream catalytic reactor 220. The reactor 210 may include a consumable liner that reacts with the energized effluent to remove the hazardous gases. The catalytic reactor 220 may also include catalytic surfaces 227 in a honeycomb, foam, or pellet structure 225 to catalyze reactions that further reduce hazardous gas content.