摘要:
A device for identifying materials on a conveyor belt by means of X-ray fluorescence comprises an X-ray source, from which X-ray radiation is guided onto material parts, a detector head containing an X-ray detector with a multiplicity of detector elements arranged in a planar fashion for receiving X-ray radiation and converting it into electrical charge signals, and an electronic unit for reading out and processing the charge signals, which comprises for each individual detector element a signal channel having a discriminator unit with a plurality of energy thresholds and a counting unit apparatus for converting the signals into digital counting events, wherein the electronic units are interconnected such that simultaneous occurrence of signals on more than one detector element can be identified and treated separately.
摘要:
A device for identifying materials on a conveyor belt (101) by means of X-ray fluorescence comprising an X-ray source (102), from which X-ray radiation (103) is guided onto material parts (104), comprising a detector head (107) containing an X-ray detector array (108) having a multiplicity of detector elements (113, 114, 115) arranged in a planar fashion for receiving X-ray radiation (105) and for converting said X-ray radiation into electrical charge signals, and also an electronic unit (109) for reading out and processing the charge signals, which comprises for each individual detector element a signal channel (120) having in each case: a discriminator unit (117) having at least two adjustable discriminator thresholds (116, 122) for detecting all Gaussian curve-like signals (119) whose amplitude is greater than one of the two or simultaneously greater than both discriminator thresholds, and also one counting unit (118, 121) per discriminator threshold for converting the signals into digital counting events, wherein the individual detector elements of the X-ray detector array have a spatial resolution of 50 μm to 500 μm with a sensitivity to X-ray radiation in an energy range of between 500 eV and 30 keV, with an energy resolution of less than 0.5 keV at counting rates of up to 100 kcps and relative to an energy of 8.04 keV, the electronic unit comprises a signal channel for each individual detector element of the X-ray detector array, and each discriminator unit for a specific detector element is in each case electrically connected to the discriminator units of the detector elements that are spatially directly adjacent to said detector element, wherein all the discriminator units are interconnected with one another via a digital and/or analog circuit in such a way that simultaneous occurrence of signals on more than one detector element can be identified and treated electrically separately.
摘要:
The sorting method includes: an X-ray inspection step of irradiating a resin piece with X-rays including a first X-ray and a second X-ray having respective energy ranges different from each other and measuring a first transmission intensity which is an intensity of the first X-ray transmitted through the resin piece and a second transmission intensity which is an intensity of the second X-ray transmitted through the resin piece; a first determination step of making a determination as to whether the resin piece is a candidate for a useful resin piece, using the first transmission intensity; and a second determination step of making a determination as to whether a resin piece identified as a candidate for a useful resin piece in the first determination step is a useful resin piece, using a differential value obtained from the first transmission intensity and the second transmission intensity.
摘要:
Systems for sorting materials, such as those made of metal, are described. The systems may operate by irradiating the materials with x-rays and then detecting fluoresced x-rays, transmitted x-rays, or both. Detection of the fluoresced x-rays may be performed using an x-ray fluorescence detector array. The systems may be configured to provide high throughput sorting of small pieces of materials.
摘要:
The present invention relates to a method for separating mineral impurities from calcium carbonate-containing rocks by comminuting the calcium carbonate-containing rocks to a particle size in the range of from 1 mm to 250 mm, separating the calcium carbonate particles by means of a dual energy X-ray transmission sorting device.
摘要:
The method relates to the field of mineral enrichment. It involves setting a threshold value for the intensity of a luminescence signal after a given time following the end of a pulse of exciting radiation, measuring, in the course of registering the intensity of the luminescence signal of a mineral, the intensity of the luminescence signal after a given time following each pulse of exciting radiation, recording the intensity value obtained for each luminescence signal if the signal registered exceeds the set threshold value, comparing the value measured in the current period with the values obtained in the preceding periods, determining the period in which the intensity value was at its peak, and processing the luminescence signal in which the value of the measured intensity was at its peak in order to determine the separation parameters; a decision to separate the mineral to be enriched is taken in the event that the separation parameters are inside the range of given values.
摘要:
The present invention relates to a method for separating mineral impurities from calcium carbonate-containing rocks by comminuting the calcium carbonate-containing rocks to a particle size in the range of from 1 mm to 250 mm, separating the calcium carbonate particles by means of a dual energy X-ray transmission sorting device.
摘要:
A cocoon sorting system sorts cocoons with healthy larvae therein, for example healthy leafcutter bee cells, from those with non-healthy larvae therein. The system conveys cocoons through a target scanning area on a conveyor where an x-ray source directs x-rays at the cocoons in the target scanning area. An opposing sensor head receives the x-rays which have passed through the target scanning area for generating a density image of cocoons in the target area. A processor compares the density image to a prescribed density criteria and determines a rejected cocoon if the density criteria is not met. A sorting mechanism removes the rejected cocoon from a remainder of cocoons on the conveyor.
摘要:
A system for automatically inspecting matter for varying composition comprises one or more detection stations through which one or more streams of matter are advanced and particular materials therein are detected through their diffusely reflected IR spectra, if any, and/or through their variation of an electromagnetic field by their metallic portions, if any. A row of light sources distributed across the overall width of one or more belt conveyors may cause desired portions of the stream to reflect light diffusely onto a part-toroidal mirror extending over that overall width, whence the light is reflected, by a rotating, polygonal mirror through optical filters dedicated to differing IR wavelengths, onto detectors the data output of which is utilized in controlling solenoid valves operating air jet nozzles which separate-out the desired portions. Alternatively or additionally, an oscillator and an antenna which extends over that overall width generate an electromagnetic field through the belt and sensing coils sense variations therein produced by metallic portions of the stream passing through the detection station and the detection data produced by the sensing coils is used to control the solenoid valves operating the nozzles to separate-out the metallic portions.
摘要:
Method and apparatus for enabling fluid material contained in a package to be examined in a non-destructive manner to see whether there is any unacceptable alteration in the material. This examination is accomplished by shaking the package so that the package and its contents vibrate at the natural resonance frequency thereof, exposing the package to an irradiation of ultra-soft X-ray beams while the package is vibrating at the resonant frequency, either immediately after the package contents begin to be agitated by shaking or immediately after the vibration is stopped and it ceases to be agitated, detecting the strength of X-rays transmitted through the package and its contents, coverting the transmitted X-rays to a corresponding analog signal, and determining any alteration by comparing the analog signal against the refernece signal previously obtained in the same manner as described above for a like package with unaltered contents.