Abstract:
Disclosed is a planographic printing plate precursor including a photosensitive layer containing an infrared absorber, a polymerization initiator, a polymerizable compound and a binder polymer and a protective layer laminated on a support in this order, wherein the protective layer contains a mica compound and at least one polyvinyl alcohol selected from the group consisting of a polyvinyl alcohol having a saponification value of 90 mol % or less and an acid modified polyvinyl alcohol. Also disclosed is a method of making a planographic printing plate, the method including exposing the planographic printing plate precursor to light having a wavelength of 750 nm to 1400 nm and then carrying out developing step at a conveying speed of 1.25 m/min. or more with substantially no heat treatment and no water-washing treatment.
Abstract:
A planographic printing plate precursor includes a substrate and an image recording layer provided thereon, the image recording layer being capable of recording through exposure to an infrared ray and containing at least (A) an infrared absorbing agent, (B) a polymerization initiator comprising an onium salt formed by an onium cation and a carboxylic acid anion, where the carboxylic acid anion has an acid group, a hetero atom and an aromatic group, (C) a polymerizable compound and (D) a binder polymer. The planographic printing plate precursor is exposed imagewise with an infrared laser. Then, printing is carried out using the exposed planographic printing plate precursor, which is set in a printer without being subjected to any developing process, by feeding an oil based ink and an aqueous component onto the planographic printing plate precursor. Unexposed areas of the planographic printing plate precursor are removed during the printing process.
Abstract:
A method for forming a colored image with good visibility on a lithographic printing plate precursor by exposure to a laser light, particularly, a method for forming a colored image with good visibility on a lithographic printing plate precursor which is developable on a printing press, the method for forming a colored image comprising: exposing a lithographic printing plate precursor to a laser light; and heating or exposing the entire lithographic printing plate to form a colored image, wherein the lithographic printing precursor comprises a support and a photosensitive-thermosensitive layer capable of recording an image by exposure to an infrared laser, the photosensitive-thermosensitive layer containing an infrared absorbent and a discoloring material that undergoes color change upon exposure.
Abstract:
An image-recording materials containing (A) a compound having a specific partial structure and at least one group selected from an acid group having a pKa of 11 or less, the derivative of the acid group and a group capable of generating the acid group, a lithographic printing plate precursor having an image-recording layer containing the compound (A), and a lithographic printing method using the lithographic printing plate precursor, are provided.
Abstract:
Disclosed is a printing plate material comprising a surface roughened aluminum support, and provided thereon, an image formation layer containing a heat-curable polymer having a main chain polymer in the main chain, and an acryloyl group or a methacryloyl group in the side chain, a glass transition temperature Tg of the main chain polymer being from 0 to 100° C., wherein the printing plate material is capable of being developed on a printing press.
Abstract:
A lithographic printing method comprising the following steps (i) to (v): (i) a step of preparing a lithographic printing plate precursor comprising a support having thereon an image recording layer removable by a printing ink, a fountain solution or both thereof, (iia) a step of loading the lithographic printing plate precursor on a plate cylinder of a printing press after imagewise exposing it, or (iib) a step of imagewise exposing the lithographic printing plate precursor after loading it on a plate cylinder of a printing press, (iii) a step of supplying ink to the lithographic printing plate precursor after exposure by a keyless inker, (iv) a step of removing the image recording layer of the lithographic printing plate precursor in the unexposed part after the completion of the step (iii) or simultaneously with the step (iii), and (v) a step of performing printing.
Abstract:
A lithographic printing plate precursor comprising a support having provided thereon a hydrophilic layer which is converted to hydrophobic by heating, wherein the hydrophilic layer contains (1) an organic and inorganic composite having a crosslinking structure obtained by hydrolysis and poly-condensation on condition of coexistence of a metal complex compound and an organic hydrophilic resin, and (2) core-shell structural fine particles containing a resin core having a functional group capable of interacting with the organic and inorganic composite and a resin shell not substantially having a functional group capable of interacting with the organic and inorganic composite.
Abstract:
A lithographic printing plate precursor comprises: a support; and an image recording layer that contains image forming particles and a non-water-soluble binder, the non-water-soluble binder interacting with the surface of the image forming particles. A lithographic printing plate precursor comprises: a support; and an image recording layer that contains a polymer binder and particles, wherein the particles are microcapsules having a polymerizable functional group as a wall material.
Abstract:
This invention describes a heat sensitive composition comprising: (A-I) a compound which is represented by the following general formula (I) and generates a radical when heated, and (B-I) a compound having physical and chemical properties that are changed irreversibly by a radical, R—SO2−M+ General formula (I) wherein R represents an alkyl group or aryl group, and M+ represents a counter cation selected from sulfonium, iodonium, diazonium, ammonium and azinium; and a negative planographic printing plate precursor which can be recorded by heat mode using this composition. This invention also describes a planographic printing plate precursor comprising a substrate having disposed thereon a photosensitive layer containing (C-II) a light-heat converting agent, (B-II) a compound having a polymerizable unsaturated group, and (A-II) an onium salt having at least two cation parts in one molecule.
Abstract:
A lithographic printing plate precursor comprising: a support; an image recording layer comprising (A) an actinic ray absorber, (B) a polymerization initiator, and (C) a polymerizable compound, wherein the image recording layer is capable of being removed with at least one of a printing ink and a fountain solution; and an overcoat layer comprising an inorganic laminar compound. And a lithographic printing method comprising: mounting a lithographic printing plate precursor on a printing press; imagewise exposing the lithographic printing plate precursor with laser beams; and feeding at least one of a printing ink and a fountain solution to the lithographic printing plate precursor to remove a laser beams non-exposed area in an image recording layer; and performing printing.