Abstract:
Method and apparatus for suppressing cable dynamics in a device towed in water. The apparatus includes at least one section for suppression of motion, wherein the at least one section includes an axial motion suppression section; and the axial motion suppression section comprising equipment for the attenuation of axial vibrations in an electro-mechanical cable. The equipment is configured to produce a digressive stiffness curve.
Abstract:
Disclosed are methods and systems that include a multiple-tube electrode assembly. An embodiment discloses an electrode assembly, comprising: a carrier body comprising an elongated support; and electrically conducting surfaces longitudinally spaced along the carrier body, wherein the electrically conducting surfaces are electrically coupled in parallel.
Abstract:
There is provided a solid seismic streamer cable for use in seismic surveying in marine environments. The streamer is characterized by a buffer layer 2 which is provided with a cut-out 50 and a sensor element arranged in the cut-out 50. There is also provided an associated hydrophone for integration into the seismic streamer cable. The hydrophone is characteristic in a split-element sensor base 10, 11 being suited for efficient mounting into the cut-outs 50 of the seismic cable. There is also provided an associated accelerometer for integration into the seismic streamer cable. The accelerometer is characteristic by a split-element sensor base 30, 35 for being efficiently arranged into the cut-outs 50 of the seismic cable. A method of producing a seismic streamer cable according to the invention incorporating a hydrophone or accelerometer according to the invention is also provided.
Abstract:
A disclosed survey method includes towing geophysical survey streamers in a body of water and using sensors within the streamer to collect measurements that are then conveyed along the streamer to a recording station using at least one wireless transmission link. In some implementations at least one sensor is coupled to a wireless transceiver in a streamer to transmit geophysical survey measurement data along the streamer to a wireless base station. The base station receives the wirelessly transmitted seismic data and communicates it to a central recording station. Each segment of the streamer may contain a base station to collect wireless data from the sensors in that segment, and each base station may be coupled to the central recording station by wiring (e.g., copper or fiber optic). Other implementations employ ranges of sensors wired to local transceivers that form a peer-to-peer wireless network for communicating data to the central recording station.
Abstract:
A seismic sensor cable system is provided. The seismic sensor cable system may include a cable, a first sensor configured to measure motion of the cable, wherein measurement of motion by the first sensor substantially excludes particle motion associated with seismic waves, and a second sensor configured to measure particle motion associated with the seismic waves.
Abstract:
Covers and methods to protect outer surfaces of marine equipment are provided. The covers are manufactured to extend along at least one dimension. The covers may have antifouling properties due to the thread used to manufacture the covers or due to treatment applied to the covers after manufacturing. The covers are removably mounted on one or more pieces of marine survey equipment, without employing fastening mechanisms.
Abstract:
The present invention relates to a 3D seismic marine survey apparatus. More particularly, it relates to a foldable-fixing type 3D seismic survey apparatus for a small ship and a method of 3D seismic survey using the foldable-fixing type 3D seismic survey apparatus. The foldable-fixing type 3D seismic survey apparatus for a small ship includes: a seismic wave generator; and a seismic unit that includes a plurality of floating board units, and foldable fixing-frames connecting and fixing the floating board units to each other in a floating board array such that relative positions of the floating board units are fixed, and being folded for transporting and unfolded for installing, in which the seismic unit receives 3D seismic waves while being towed behind the seismic wave generator after being moved and unfolded at a survey location.
Abstract:
Certain aspects of the present disclosure generally relate to cleaning geophysical equipment in water. An exemplary method includes illuminating, with laser light, an obstruction on the geophysical equipment while the geophysical equipment is deployed in an operable configuration (e.g., towed by a survey vessel).
Abstract:
Embodiments, including apparatuses, systems and methods, for attaching autonomous seismic nodes to a deployment cable. In an embodiment, an apparatus includes a seismic node having a direct attachment mechanism configured to directly attach the seismic node to a deployment line, the direct attachment mechanism being configurable between an open and/or unlocked position and a closed and/or locked position to release and retain the deployment line.
Abstract:
A method and apparatus for a seismic cable is described. In one embodiment, a method for performing a seismic survey in a water column is described. The method comprises providing a length of flexible cable from a cable storage device disposed on a vessel to a cable handling device adjacent the cable storage device. The flexible cable comprises a specific gravity that is greater than a specific gravity of water in the water column. The method further comprises routing the flexible cable to pass adjacent a workstation disposed on the vessel, deploying a free end of the flexible cable into the water column, attaching at least one of a plurality of seismic sensor units to the cable as the cable passes the workstation, and controlling the motion of the vessel and the rotational speed of the cable handling device to allow the flexible cable to rest on the bottom of the water column.