Abstract:
Methods and apparatus for cable termination and sensor integration at a sensor station within an ocean bottom seismic (OBS) cable array are disclosed. The sensor stations include a housing for various sensor components. Additionally, the sensor stations can accommodate an excess length of any data transmission members which may not be cut at the sensor station while enabling connection of one or more cut data transmission members with the sensor components. The sensor stations further manage any strength elements of the cable array.
Abstract:
Retriever systems for marine geophysical survey sensor streamers. At least some of the illustrative embodiments are methods including attaching a retriever system to a sensor streamer by: wrapping a lifting bag assembly at least partially around the sensor streamer, the lifting bag assembly comprising a deflated lifting bag, a gas cylinder, and a depth trigger mechanism; and covering the lifting bag assembly with an outer cover.
Abstract:
A method and apparatus for a seismic cable is described. In one embodiment, a method for performing a seismic survey in a water column is described. The method comprises providing a length of flexible cable from a cable storage device disposed on a vessel to a cable handling device adjacent the cable storage device. The flexible cable comprises a specific gravity that is greater than a specific gravity of water in the water column. The method further comprises routing the flexible cable to pass adjacent a workstation disposed on the vessel, deploying a free end of the flexible cable into the water column, attaching at least one of a plurality of seismic sensor units to the cable as the cable passes the workstation, and controlling the motion of the vessel and the rotational speed of the cable handling device to allow the flexible cable to rest on the bottom of the water column.
Abstract:
The present invention relates to streamer cables. One embodiment of the present invention relates to a method for preparing a streamer cable. The method may comprise retrofitting the streamer cable with a solid void-filler material, where the streamer cable was configured as a liquid-filled streamer cable. The retrofitting may comprise introducing a void-filler material into the streamer cable when the void-filler material is in a liquid state and curing or otherwise solidifying the void-filler material to a solid state. In another embodiment, the present invention relates to a streamer cable comprising an outer skin and-at least one sensor positioned within the outer skin. The streamer cable may also comprise a solid void-filler material positioned between the outer skin and the at least one sensor, wherein the solid void-filler material is coupled to the at least one sensor.
Abstract:
A technique includes distributing particle motion sensors along the length of a seismic streamer. Each particle motion sensor is eccentrically disposed at an associated angle about an axis of the seismic streamer with respect to a reference line that is common to the associated angles. The sensors are mounted to suppress torque noise in measurements that are acquired by the particle motion sensors. This mounting includes substantially varying the associated angles.
Abstract:
An anti-biofouling casing for a seismic streamer is described, the anti-biofouling casing comprising a polymer system comprising a hydrophobically-modified base polymer, the hydrophobically-modified base polymer comprising a base polymer having a backbone and a hydrophobically derivatized chain extender coupled to said backbone of said base polymer, wherein the the hydrophobically derivatized chain extender comprises a hydrophobic moiety. The anti-fouling casing comprises a hydrophobic surface the serves to prevent biofouling of the surface.
Abstract:
An anti-biofouling casing for a seismic streamer is provided, the casing comprising an outer-skin, the outer skin comprising a mix of a base material and a molecular additive, wherein the molecular additive is localized throughout the base material and the molecular additive is configured to impart a high contact angle and/or a low surface energy to an outer surface of the anti-biofouling casing to prevent adhesion of living organism thereto. The outer-skin may comprise a casing/skin for a seismic streamer such that the streamer skin comprises a base material with a hydrophobic molecular additive distributed throughout the streamer skin.
Abstract:
Some embodiments of the disclosed invention include a method for acquiring marine seismic data using solid streamers in a curved pattern. Streamers can be towed in a curved pattern within a body of water. While being towed in the curved patter the source may be fired and response data can be collected by the streamers as they are towed through the water in the curved/circular pattern. These streamers can be solid streamers and can be filled with a gel like substance. Moreover, the streamers can be placed at various known depths within the body of water.
Abstract:
Depth triggers for marine geophysical survey cable retriever systems. At least some of the illustrative embodiments are methods including causing a submerged geophysical survey cable to surface. The cause may include: moving a piston within a cylinder of a housing coupled to the geophysical survey cable, the moving of the piston responsive to pressure exerted on a face of the piston as the geophysical survey cable reaches or exceeds a predetermined depth, wherein the movement of the piston overcomes a force created by interaction between two materials, the force latches the piston in place at depths above the predetermined depth; and responsive to the piston overcoming the force that latches the piston deploying a mechanism that makes the geophysical survey cable more positively buoyant, the deploying responsive to movement of the piston.
Abstract:
A connection system for connecting external devices to specified locations on a marine seismic streamer. Inner collars having raised bosses are clamped to the cable at specified locations along its length. Each inner collar forms a circular race encircling the cable. An external device is attached to a pair of cuffs in the form of C-shaped cylindrical rings each with a circular inner surface. A gap in the ring interrupts the inner surface. The width of the gap is greater than the diameter of the bosses so that the cuffs may be slid onto the collars when the gaps are aligned with the bosses. The bosses are circumferentially offset when the cable is in its normal operating state to lock the cuff and the external device to the collars. The cuffs and the external device can be installed on or removed from the cable by twisting the cable to align the bosses and sliding the cuffs onto or off of the collars. When installed, the cuffs ride on the races to allow the cable to rotate inside the cuffs.