摘要:
A fiber optic cable assembly includes a fiber optic connector and a fiber optic cable having at least one strength element, the connector and cable held together by a crimp band. The crimp band may include at least one lateral aperture on at least one end for inspecting the disposition of the strength element prior to crimping to ensure a uniform distribution of the strength element.
摘要:
High-connection density and bandwidth fiber optic apparatuses and related equipment and methods are disclosed. In certain embodiments, fiber optic apparatuses are provided and comprise a chassis defining one or more U space fiber optic equipment units. At least one of the one or more U space fiber optic equipment units may be configured to support particular fiber optic connection densities and bandwidths in a given 1-U space. The fiber optic connection densities and bandwidths may be supported by one or more fiber optic components, including but not limited to fiber optic adapters and fiber optic connectors, including but not limited to simplex, duplex, and other multi-fiber fiber optic components. The fiber optic components may also be disposed in fiber optic modules, fiber optic patch panels, or other types of fiber optic equipment.
摘要:
Fiber optic shelf assemblies and furcation mounting structures for securing a plurality of furcation bodies of respective fiber optic cable assembles within the fiber optic shelf are disclosed. In one embodiment, the fiber optic shelf has a one-to-one correspondence between a plurality of respective modules and the respective fiber optic cable assemblies. Additionally, the fiber optic shelf assemblies and furcation mounting structures disclosed advantageously allow the mounting of a relatively large number of furcation bodies within the fiber optic shelf assembly for supporting relatively large fiber optic connections per 1U rack space.
摘要:
Embodiments disclosed include fiber optic module housings used for fiber optic modules and methods for manufacture and assembly of same. The fiber optic module housings comprise at least one hinge to allow a component of the housing to be opened and closed to allow easy access to the fiber optic module housing and/or its internal chamber. The hinge may be a living hinge disposed within a single part to allow each side of the living hinge to be bent or folded. The hinge may be disposed on a panel configured to support one or more fiber optic components to allow the panel to be opened and closed about the module housing for access. The fiber optic module housing may also be entirely comprised of a single part employing the use of living hinges between foldable parts. In this manner, no sides or parts of the fiber optic module housing need be provided as separate parts.
摘要:
A cable routing guide attached to a fiber optic apparatus, such as a module positioned on a fiber optic equipment tray is disclosed. The cable routing guide is adapted to receive a length of at least one fiber optic cable intended to be connected to a cable connection point, such as a fiber optic adapter disposed on the module. The cable routing guide allows the at least one fiber optic cable to move in response to the fiber optic equipment tray or the module moving between a first position and a second position in a manner such that the length of the at least one fiber optic cable from the cable routing guide to the fiber optic adapter remains substantially unchanged. Moreover, the at least one fiber optic cable that is received by the cable routing guide may be retained and maintained by the cable routing guide without being tensed or stressed. In this manner, the at least one fiber optic cable that is routed to and through the fiber optic apparatus may not be affected by the movement of the module frame, the module, and/or the adapter between the first and second positions.
摘要:
Embodiments disclosed include fiber optic module housings used for fiber optic modules. The fiber optic module housings comprise at least one hinge to allow a component of the housing to be opened and closed to allow easy access to the fiber optic module housing and/or its internal chamber. The hinge may be a living hinge disposed within a single part to allow each side of the living hinge to be bent or folded. The hinge may be disposed on a panel configured to support one or more fiber optic components to allow the panel to be opened and closed about the module housing for access. The fiber optic module housing may also be entirely comprised of a single part employing the use of living hinges between foldable parts. In this manner, no sides or parts of the fiber optic module housing need be provided as separate parts.
摘要:
Fiber optic cable assemblies having furcation bodies with features that are advantageous for manufacturing are disclosed along with methods of making the same. The furcation body include at least one anti-rotation feature for mounting the furcation body and a viewing portion and/or weep hole. The viewing portion is advantageous since it allows the observation during filling of the cavity with an epoxy, adhesive, or the like to strain relieve components of the fiber optic cable assembly within the furcation body. Simply stated, the viewing portion is translucent or clear for observing the filling of the furcation body and detecting if an air bubbles/air pockets are formed so that they can be reduced and/or eliminated. The furcation body may also have a weep hole for allowing air bubbles/air pockets to escape. Additionally, the furcation body of the fiber optic cable assembly may be secured within a clip or other suitable structure for mounting the same.
摘要:
A fiber optic cable assembly including a fiber optic cable and a furcation body is disclosed. An attachment feature can be provided to mount the furcation body to a mounting surface of fiber optic equipment for securing a portion of the fiber optic cable assembly to the fiber optic equipment. The attachment feature may include an integrated anti-rotation feature to inhibit rotation of the furcation body with respect to a mounting surface. The anti-rotation feature is provided by one or more generally planar surfaces of the furcation body for abutting with at least one complementary planar mounting surface.
摘要:
A fiber optic apparatus having a fiber optic equipment tray and an extension adapted to receive, organize and manage fiber optic cables routed to the fiber optic equipment tray is disclosed. The fiber optic equipment tray has a front, a rear, a base, and at least one extension rail. The extension movably attaches to the fiber optic equipment tray at the extension rail and, thereby, slidably extends from and retracts toward the rear of the fiber optic equipment tray. The extension comprises a shelf and a cable management tray hingedly attached to the shelf. The shelf moves over the base when the extension extends from and retracts toward the fiber optic equipment tray. The cable management tray is in planer alignment with the fiber optic equipment tray when the extension is retracted, and allowed to pivot downwardly when the extension is extended. At least one furcation plug tray attaches to the cable management tray. The at least one furcation plug tray adapted to mount at least one furcation plug to which fiber optic cables may be connected.
摘要:
Fiber optic cable assemblies having a fiber optic cable, a furcation body, and one or more furcated legs are disclosed herein. In embodiments disclosed herein, the furcation body comprises a first end and a second end opposite the first end, the first end having the fiber optic cable extending therefrom, and the second end having one or more furcated legs extending therefrom. The furcation body can include one or more features that facilitate cable management by supporting cabling components used in making fiber optic interconnections. The cable management features of the fiber optic cable assemblies advantageously inhibit sagging, facilitate access to fiber optic interconnections, and/or improve air flow paths between fiber optic interconnections.