摘要:
Fiber optic shelf assemblies and furcation mounting structures for securing a plurality of furcation bodies of respective fiber optic cable assembles within the fiber optic shelf are disclosed. In one embodiment, the fiber optic shelf has a one-to-one correspondence between a plurality of respective modules and the respective fiber optic cable assemblies. Additionally, the fiber optic shelf assemblies and furcation mounting structures disclosed advantageously allow the mounting of a relatively large number of furcation bodies within the fiber optic shelf assembly for supporting relatively large fiber optic connections per 1 U rack space.
摘要:
Fiber optic shelf assemblies and furcation mounting structures for securing a plurality of furcation bodies of respective fiber optic cable assembles within the fiber optic shelf are disclosed. In one embodiment, the fiber optic shelf has a one-to-one correspondence between a plurality of respective modules and the respective fiber optic cable assemblies. Additionally, the fiber optic shelf assemblies and furcation mounting structures disclosed advantageously allow the mounting of a relatively large number of furcation bodies within the fiber optic shelf assembly for supporting relatively large fiber optic connections per 1U rack space.
摘要:
Fiber optic shelf assemblies and furcation mounting structures for securing a plurality of furcation bodies of respective fiber optic cable assembles within the fiber optic shelf are disclosed. In one embodiment, the fiber optic shelf has a one-to-one correspondence between a plurality of respective modules and the respective fiber optic cable assemblies. Additionally, the fiber optic shelf assemblies and furcation mounting structures disclosed advantageously allow the mounting of a relatively large number of furcation bodies within the fiber optic shelf assembly for supporting relatively large fiber optic connections per 1U rack space.
摘要:
Embodiments disclosed in the detailed description include a telescoping fiber optic module. The telescoping fiber optic module may be provided in a fiber optic equipment chassis which may be disposed in an equipment rack to support fiber optic connections. In embodiments disclosed herein, the telescoping fiber optic module is comprised of a fixed housing portion having an opening on a front side defining a passage inside the fixed housing portion. The fiber optic module is also comprised of a telescoping portion received in the passage inside the fixed housing portion. In this manner, the telescoping portion can telescope in and out of the fixed housing portion. This allows fiber optic connectors or adapters disposed in the telescoping portion and any connections made thereto to be telescoped out for improved access and telescoped back into the fixed housing portion when access is no longer needed.
摘要:
Furcation management structures and fiber optic shelf assemblies including one or more furcation management structures are disclosed. The furcation management structures are disposed in a chassis of a fiber optic shelf assembly and define a mounting surface for mounting at least one furcation body of a fiber optic cable assembly thereto. The furcation management structure may allow the fiber optic shelf assemblies to provide a greater density of fiber optic cable assemblies to support high density fiber optic equipment. Moreover, the furcation management structures provides the craft with an organized mounting structure that is relatively quick and easy to remove, rearrange, and/or reconfigure.
摘要:
Fiber optic shelf assemblies and furcation mounting structures for securing a plurality of furcation bodies of respective fiber optic cable assembles within the fiber optic shelf are disclosed. In one embodiment, the fiber optic shelf has a one-to-one correspondence between a plurality of respective modules and the respective fiber optic cable assemblies. Additionally, the fiber optic shelf assemblies and furcation mounting structures disclosed advantageously allow the mounting of a relatively large number of furcation bodies within the fiber optic shelf assembly for supporting relatively large fiber optic connections per 1U rack space.
摘要:
Embodiments disclosed in the detailed description include a telescoping fiber optic module. The telescoping fiber optic module may be provided in a fiber optic equipment chassis which may be disposed in an equipment rack to support fiber optic connections. In embodiments disclosed herein, the telescoping fiber optic module is comprised of a fixed housing portion having an opening on a front side defining a passage inside the fixed housing portion. The fiber optic module is also comprised of a telescoping portion received in the passage inside the fixed housing portion. In this manner, the telescoping portion can telescope in and out of the fixed housing portion. This allows fiber optic connectors or adapters disposed in the telescoping portion and any connections made thereto to be telescoped out for improved access and telescoped back into the fixed housing portion when access is no longer needed.
摘要:
Furcation management structures and fiber optic shelf assemblies including one or more furcation management structures are disclosed. The furcation management structures are disposed in a chassis of a fiber optic shelf assembly and define a mounting surface for mounting at least one furcation body of a fiber optic cable assembly thereto. The furcation management structure may allow the fiber optic shelf assemblies to provide a greater density of fiber optic cable assemblies to support high density fiber optic equipment. Moreover, the furcation management structures provides the craft with an organized mounting structure that is relatively quick and easy to remove, rearrange, and/or reconfigure.
摘要:
A slack storage receptacle for storing an excess length of a pre-connectorized fiber optic drop cable extending between an optical connection terminal and a network interface device (NID) includes a housing and a storage means disposed within the housing for receiving the drop cable such that the drop cable slack is stored external to the NID. The slack storage receptacle may be secured to an exterior wall of a subscriber premises and the NID mounted thereon. Alternatively, the slack storage receptacle may be positioned around and formed to the NID. Alternatively, the slack storage receptacle may be buried in the ground adjacent the NID. The drop cable slack may be wound onto the storage means after deployment. Alternatively, the slack storage receptacle may be pre-assembled, shipped to the subscriber premises, and the drop cable unwound from the storage means with the drop cable slack remaining wound on the storage means.
摘要:
High-connection density and bandwidth fiber optic apparatuses and related equipment and methods are disclosed. In certain embodiments, fiber optic apparatuses are provided and comprise a chassis defining one or more U space fiber optic equipment units. At least one of the one or more U space fiber optic equipment units may be configured to support particular fiber optic connection densities and bandwidths in a given 1-U space. The fiber optic connection densities and bandwidths may be supported by one or more fiber optic components, including but not limited to fiber optic adapters and fiber optic connectors, including but not limited to simplex, duplex, and other multi-fiber fiber optic components. The fiber optic components may also be disposed in fiber optic modules, fiber optic patch panels, or other types of fiber optic equipment.